

1

GOVERNMENT OF TAMILNADU
DIRECTORATE OF TECHNICAL EDUCATION

CHENNAI – 600 025

STATE PROJECT COORDINATION UNIT

Diploma in Computer Engineering

Course Code: 1052
M – Scheme

e-TEXTBOOK

on

MOBILE COMPUTING
for

VI Semester DCOMP

Convener for COMPUTER ENGINEERING Discipline:
 Mrs.A.Ghousia Jabeen,
 Principal,

Thanthai Periyar E.V.Ramasamy Govt. Polytechnic College ,
 Vellore – 632 002

Team Members for Mobile Computing:

 Trichy – 620 010

 Trichy – 620 010

 Sivakasi - 626 130

Validated By
 Mrs. K.Sivagama Sundari,
 Lecturer(Senior Grade) /Computer Engg.
 Ayyanadar Janakiammal Polytechnic College,
 Sivakasi – 626 189

 Mr. T.Muthamil Selvam.,
 Lecturer/(SG) Computer Engg.
 Seshasayee Institute of Technology,

 Ms.C.Rita Roselin,
 Lecturer / Computer Engg.
 Seshasayee Institute of Technology

 Mr.M.Thirumurugan,
 Lecturer/ Computer Engg.
 Arasan Ganesan Polytechnic College,

2

STATE BOARD OF TECHNICAL EDUCATION & TRAINING,
TAMILNADU.

DIPLOMA IN COMPUTER

ENGINEERING M- SCHEME

(to be implemented to the student Admitted from the Year 2015-2016 on wards)

Course Name : Diploma in Computer Engineering.

Subject Code : 35262

Semester : VI

Subject title : MOBILE COMPUTING

TEACHING & SCHEME OF EXAMINATION:

No. of weeks per Semester 15 Weeks

Subject

Instructions Examination
Duration Hours

/
Week

Hours /
Semeste
r

Internal
Assessmen

t

Board
Examinatio

n

Total

MOBILE
COMPUTIN

G

5

75

25

75

100

3 Hrs

Topics and Allocation of Hours:

Sl.No Topic Time (Hrs)

1 Introduction to Mobile Computing , WiFi , Bluetooth 11

2 Introduction to GSM , SMS ,GPRS , Mobile OS 11

3 Introduction to ANDROID 15

4 VIEWs 14

5 Location Based Service and SQLite 14

 TEST AND REVISION 10

 TOTAL 75

Rationale:

Knowing the details of Mobile and their working principle are need of the every

common man. Mobile Application development is the very hot business domain.

Majority of the corporate have a separate division for the development of mobile

applications. It is imperative that students must know the way to apply

advanced data communicating methods and networking protocols for wireless and

mobile devices.

Students must utilize and employ application frameworks for developing mobile

applications including under disconnected and weakly connected environment

They should be in a position to

3

select components and networks for particular application , creatively analyze

mobile and wireless networks and critically analyze security issues of mobile

and wireless computing systems

Objectives:

 To introduce the characteristics, basic concepts and systems issues in mobile

Computing

 To illustrate architecture and protocols in Mobile computing and to

identify the trends and latest development of the technologies in the

area

 To understand the network protocols governing the mobile communication

 To know the different kinds of mobile OS prevailing in the market

 To know Android OS in detail

 To understand the components of a Mobile App.

 To give practical experience in the area through the development of Mobile

apps

 To design successful mobile computing applications and services

 To evaluate critical design tradeoffs associated with different
mobile technologies, architectures, interfaces and business models and

how they impact the usability, security, privacy and commercial viability of
mobile and pervasive computing services and applications

 To know the development of Mobile apps using database

DETAILED SYLLABUS

UNIT -I Introduction to Mobile Computing , WiFi , Bluetooth 11 Hrs

1.1 Introduction : Evolution of Mobile Computing – Important terminologies

– Mobile computing functions – Mobile computing Devices –

Networks: Wired , Wireless , Adhoc - Comparison of wired and

wireless mechanism - Various types of wireless communication

technologies used in Mobiles, Antennas

3 Hrs

1.2 Architecture : Architecture of Mobile Computing – 3- Tier
Architecture –
Presentation(Tier-1), Application (Tier -2), Data (Tier – 3)

4 Hrs

1.3 Mobile computing through Telephony: Evolution through telephony 1 Hrs

1.4 Wireless LAN: Introduction - Applications of WLAN – Infrared versus

Radio transmission – Features of WI-FI and WI-MAX – Bluetooth :

Introduction and application

3 Hrs

4

UNIT-II Introduction to GSM , SMS ,GPRS , Mobile OS 11 Hrs

2.1 Global System for Mobile Communication (GSM): Introduction – GSM

Architecture – GSM Entities (Basics only) – Introduction to CDMA

2 Hrs

2.2 Short Message Service (SMS): Mobile computing over SMS – Short
Message Service – Strength of SMS – SMS Architecture – Value

added services through SMS – VAS Examples

3 Hrs

2.3 General Packet Radio Service (GPRS): Introduction – GPRS Packet
data Network : Applications for GPRS : Generic Applications, GPRS

Specific Applications – Limitations of GPRS – Features of 3G and 4G

Data Service

3 Hrs

2.4 Mobile Operating Systems : Evaluation of Mobile Operating

System-Handset Manufactures and their Mobile OS- Mobile OS

and their features. Linux Kernel based Mobile OS

3 Hrs

UNIT-III Introduction to ANDROID 15 hrs

3.1 ANDROID : Android Versions – Features of Android – Architecture

of Android –Android Market – Android Runtime (Dalvik Virtual
Machine)

4 Hrs

3.2 ANDROID SDK & ADT : Android SDK – Android Development Tool
(ADT) – Installing and configuring Android – Android Virtual Device

(AVD)

3 Hrs

3.3 ACTIVITIES & INTENTS : Understanding Activites – Linking activities

and indents –Calling built-in applications using intents – Fragments

Displaying Notifications

4 Hrs

3.4 User Interface : Views and Viewgroups – Layouts – Display

Orientation – Action Bar – Listening for UI Notifications

4 Hrs

UNIT-IV VIEWs 14 hrs

4.1 Basic Views : Textview, Button, Image Button, EditText, CheckBox,

ToggleButton, RadioButton and RadioGroup Views, ProgressBar

View, Auto Complete Text View

4 Hrs

4.2 Advanced Views : Time Picker View and Date Picker View – List Views

– Image View – Menus – Analog and Digital View – Dialog Boxes

4 Hrs

4.3 Displaying Pictures & Menus with Views: Image View –

Gallery View – ImageSwitcher – GridView - Creating the

Helper Methods – Options Menu – Context Menu

4 Hrs

4.4 SMS, Phone: Sending SMS – Receiving SMS – Making phone call 2 Hrs

UNIT V Location Based Service and SQLite 14 hrs

5.1 Location Based Services : Obtaining the Maps API Key- Displaying

the Map – Zoom Control – Navigating to a specific location –

Adding Marker – Geo Coding and reverse Geo coding

5 Hrs

5

5.2 Content Provider : Sharing data – view contacts – Add contacts –
Modify contacts –Delete Contacts

3 Hrs

5.3 Storage : Store and Retire data’s in Internal and External

Storage – SQLite - Creating and using databases

2 Hrs

5.4 Android Service : Consuming Web service using HTTP , downloading
binary Data –Downloading Text Content – Accessing Web Service

4 Hrs

TEXT BOOK

Sl.No. Title Author Publisher

1. Beginning Android 4 Application

Development
Wei-Meng Lee Wiley India

Edition

2. Android Apps for Absolute Beginners Jackson Apress

3 Mobile Computing Computing Asoke
K Talukder,

Hasan Ahmed, Roopa

R Yavagal

TMGH

4 Mobile communications Jochen schiller Pearson
Education,

6

CONTENTS

Unit No. Unit Title Page No.

I
Introduction to Mobile

Computing , WiFi , Bluetooth
7-20

II
Introduction to GSM , SMS ,GPRS ,

Mobile OS
21-37

III Introduction to ANDROID 38-103

IV VIEWs 104-168

V Location Based Service and SQLite 169-225

7

 UNIT - I : Introduction to Mobile Computing , WiFi , Bluetooth

Objectives

At the end of the unit, students can

 Define what is cell, base station, hand-off, cell sector, cell split

 Explain the concept of How Mobile Computing

 Define the mobile computing functions and devices

 Define the various types of networks used in mobile computing

 Explain the general architecture of mobile computing

 Explain the complete concepts behind telephony system

Define the usage of WLAN

 Define Wi-fi and configure wi-fi.

 Define Bluetooth technology and differentiate it with wi-fi

1.1 INTRODUCTION TO MOBILE COMPUTING

1.1.1 Evolution of Mobile Computing

With the handheld device, conversation between two users at different places is called

mobile communication. Firstly mobile communication deals with voice based conversation.

Now, both audio and video data can be transmitted is possible. People more likable one of

the mobile communication device is Cellular phone. Because, recent cellular technology now

comes with more features such as E-mail, Internet, SMS, MMs, GPS, Games etc.

History of Cellular Mobile Communication

During the travelling time, the communication between the people is more difficult. At the

beginning, the Light source is used to make communication with using of mirrors. When light

is ON referred as Modulated and OFF is referred as Demodulated.

Before Radio Transmission, Lights and Flags are used as the important Wireless

Communication in Navy. In 1897, Guglielmo Marconi invented the wireless telegraph

communication by encoding alphanumeric characters in analog.

In 1946, the first Public Mobile Telephone System was introduced with analog frequency

modulation to cover 50 miles radius. It is not fully suited because it used only 120k spectrum

for voice communication.

In 1960, with the Full Duplex services improved Mobile Telephone System was developed.

Late 1960, Bell Lab was introduced the Cellular with 12 channels which served 534

subscriber. In 1983, the Advanced Mobile Phone Systems (AMPS) functioned with 666

channels. This is the First U.S Cellular System and more flexible. Because, it works with the

Frequency Modulation and Frequency Division Multiple Access.

8

Later in the year 1991, the Digital Cellular services were introduced with more applications.

1.1.2 IMPORTANT TERMINOLOGIES

Cell

 It is the smallest Geographical Area for cellular mobile communication radio

coverage.

 The shape of the cell is Hexagon.

 Each cell has a Base Station.

Base Station

 Base Station provides function between mobile unit and message switching center.

Base station consists of antenna, control unit and a transceiver. It is located in each

cell.

Mobile Unit

 It is a hand held device that communicates with the base station

 A mobile unit is uniquely identified by International Mobile Equipment Identity (IMEI)

 An individual subscriber can be identified by International Mobile Subscriber Identity.

(IMSI)

Cell Splitting

 In high cellular traffic regions, the larger cells are sub-divided into smaller cells for

complete radio coverage.

Hand-off

 When a mobile unit moves from one cell to another cell, the call in progress will be

handed over from one base station to another without disturbing the call in progress.

Control Channel

 It is used for necessary exchange of information which is related to settings regarding

establishment of cell Base Station and the Mobile Unit.

Cell Sectoring

 A single cell can be divided into multiple sectors, where the directional antenna

should focus on each sector.

Traffic Channel

 It is used for carrying data or voice connections between different users.

Fading

 When one signal path loses its strength, it is called Fading.

Forward Channel

 The transmission of information from base station to mobile unit is called Forward

Channel.

9

Reverse Channel

 The transmission of information from mobile unit to base station is called Reverse

Channel.

Transceiver

 It is a device used for both transmitted and receiving radio signals.

Subscriber

 Those who pays some amount as a subscription charges for using Mobile

Communication system

Mobile Station

 It is present in the hand held personal unit.

 It is mainly intended its service while in movement at any location.

Full Duplex System

 The communication system which allows two way communications simultaneously.

Transmissions and Reception is done on two different channels.

 Example : Telephone or Mobile Phone

Half Duplex System

 The communication system which allows two way communications at the same

channel. Either Transmission or Reception can be done at a time.

 Wireless Chord

Simplex System

 The communication system which allows only one way communication

 Example : Walkie Talkie

Roamer

 If mobile station operated its own services from an area other than the subscribed

area.

1.1.3 MOBILE COMPUTING FUNCTIONS

 The following are the few characteristics supported by a mobile computing system.

They are

User Mobility

The user should be able to use the same service when he moves from one place to another.

The service may be remote or home network.

Bearer Mobility

The user should be capable to use to some service even if he moves from one bearer to

another. These bearer are refers to some Service Station.

10

Host Mobility

The user device can be either a Server or a Client. In such cases, the IP should be given

care if it is on move. The service can be accessible from different locations over different

networks with the same device.

Service Mobility

Though the user changes from one service to another the service should remain enabled.

1.1.4 MOBILE COMPUTING DEVICES

The following are some of the Mobile Computing Devices available in the market.

Personal Digital Assistant (PDA)

 It is a hand held device

 It allows us to carry much of the digital information.

Tablet PCs

 Tablet PCs are larger and more powerful than PDA’s. It includes specialized

handwriting recognition software.

Notebook Computer

 It is expensive and powerful tool for carrying electronic information.

Smart Phones

 It is the combination of various portable devices such as PMPs, PDAs and Cellular

Phones

 It tries to give the single solution for the portable computing needs.

Portable Media Players

 It allows us to carry music files and other digital files.

Pagers

 It is an inexpensive

 It provides with limited communication capabilities.

Cell Phones

 It provides services like the traditional phone services.

 Some of the facilities of cell phones are Calendars, Contact, Database, e-mail, etc.,

1.1.5 Networks

11

 The following are the network structure available in the Mobile Computing. They

are

Wireline Network

 A LAN technology with the special types of cable is used to transfer data from one

place to another.

 This network transferred the signals between the system in the form of analog and

digital.

 Cables carry radio between signals of different frequencies to transfer

 Due to high installation charges, this type network is very costly.

 Also, Configuration of this network is more difficult

 This is called Wireline Network

Wireless Network

 Computer is connected to one network technology without wires.

 It is used for communication and data transmission with the help of different types of

waves

 It reduces the installation time and cable costs.

Ad Hoc Network

 With the help of network interfaces, two computers link directly.

 We can add more number of computers by link up through a central network Switch

or Hub

1.1.6 COMPARISON OF WIRED AND WIRELESS MECHANISM

 Wired Wireless

Installation Difficult Easier

Cost High Less

Reliability High Reasonably High

Performance Very Good Good

Security Reasonably Good Reasonably Good

Mobility Limited Unlimited

Bandwidth High Low

Machines High Power Low Power

Delay Low High

Operation Connected Disconnected

12

1.1.7 VARIOUS TYPES OF WIRELESS COMMUNICATION TECHNOLOGIES USED IN

MOBILES, ANTENNAS

Wireless Communication Technologies are used for the following

 Perform the operation Faster and Efficient

 It raises the standard of human lives.

The different types of Wireless Communication Technologies are;

Bluetooth

 No Wires involved

 Enable the links between Mobile Computers, Mobile Phones, Portable Handheld

devices and Internet Connectivity.

 It is mostly used for devices such as Cellphones, Wireless Headsets, Printers,

Mouse, Keyboards, etc.,

IrDA

 The full form is Infrared data Association

 Its operation speed is 115200 bps

 It uses a series of infrared data pulses to transfer data from one device to another.

 Example : Television Remote Control

Home RF

 It is cheaper than other technology

 This technology lacks an accesses point

 This is used to establish wireless technology only at home

 Some of the devices at home are : Home appliances, Phones, Gaming

Wi-Fi

 The full form is Wireless Fidelity.

 Accessible Range is upto 50 meters

 Data transfer rate is 7 MBPS

 10 times higher than Bluetooth technology

 User no need to by other access point equipments, when use Wi-Fi

 It is used in Colleges, Offices, Conference Hall, etc.,

1.2 Architecture of Mobile Computing

 The diagrammatic representation of mobile computing architecture (Fig 1.1) is as

follows :

13

Fig. 1.1

This architecture is made up of Three-Tier. They are

Presentation (Tier-1)

A thin client based on hand held device or PC where the user enters action takes place.

Web browsers and customized client programs are included in this layer.

Application (Tier-2)

 This layer plays an important role in wireless LAN applications.

 It aces as interface between the Presentation Layer and the Data Layer.

 It processes the user input, obtains the information and makes the decisions.

 It uses the technologies like .NET, JAVA, ZEND.

Data (Tier-3)

 Data layer includes the database systems in which the processed data can be stored

and retrieved.

1.3 Evolution through telephony

Mobile telephony is the provision of telephone services to phones which may move around

freely rather than stay fixed in one location. Mobile phones connect to a terrestrial cellular

network of base stations (cell sites), whereas satellite phones connect to orbiting satellites.

Both networks are interconnected to the public switched telephone network (PSTN) to allow

any phone in the world to be dialed.

Public mobile phone systems were first introduced in the years after the Second World War

and made use of technology developed before and during the conflict. The first system

opened in St Louis, Missouri, USA in 1946 whilst other countries followed in the succeeding

decades. The UK introduced its 'System 1' manual radiotelephone service as the South

Lancashire Radiophone Service in 1958.

In January 1985 of two cellular systems - the British Telecom/Securicor 'Cellnet' service and

the Racal/Millicom/Barclays 'Vodafone' (from voice + data + phone) service. These cellular

systems were based on US Advanced Mobile Phone Service (AMPS) technology, the

modified technology being named Total Access Communication System (TACS).

14

In 1947 Bell Labs was the first to propose a cellular radio telephone network. The primary

innovation was the development of a network of small overlapping cell sites supported by a

call switching infrastructure that tracks users as they move through a network and passes

their calls from one site to another without dropping the connection.

In 1956 the MTA system was launched in Sweden. The early efforts to develop mobile

telephony faced two significant challenges: allowing a great number of callers to use the

comparatively few available frequencies simultaneously and allowing users to seamlessly

move from one area to another without having their calls dropped. Both problems were

solved by Bell Labs employee Amos Joel who, in 1970 applied for a patent for a mobile

communications system.

Bell Labs went on to install the first trial cellular network in Chicago in 1978. This trial system

was licensed by the FCC to ATT for commercial use in 1982 and, as part of the divestiture

arrangements for the breakup of ATT, the AMPS technology was distributed to local telcos.

The first commercial system opened in Chicago in October 1983. A system designed by

Motorola also operated in the Washington D.C./Baltimore area from summer 1982 and

became a full public service later the following year. Japan's first commercial radiotelephony

service was launched by NTT in 1978.

The first fully automatic first generation cellular system was the Nordic Mobile Telephone

(NMT) system, simultaneously launched in 1981 in Denmark, Finland, Norway and Sweden.]

NMT was the first mobile phone network featuring international roaming.

1.4 Wireless LAN

1.4.1 Introduction

A network that is formed without the use of Cables or Wires is called Wireless LAN. It is also

referred as Wi-Fi Network or WLAN A Wireless LAN is a flexible data communication system

implemented as an extension to, or as an alternative for a Wired LAN within a building or

campus. Using Electromagnetic Waves, WLANs transmit and receive data over the air. It

minimizes the need of Wires connections. Thus, WLAN combines data connectivity with user

mobility and through, simplified configuration, enable movable LANs.

1.4.2 Applications of Wireless LAN

Wireless LANs have a great deal of applications. Modern implementations of WLANs range

from small in-home networks to large, campus-sized ones to completely mobile networks on

airplanes and trains.

Users can access the Internet from WLAN hotspots in restaurants, hotels, and now with

portable devices that connect to 3G or 4G networks. Oftentimes these types of public access

points require no registration or password to join the network. Others can be accessed once

registration has occurred and/or a fee is paid.

Existing Wireless LAN infrastructures can also be used to work as indoor positioning

systems with no modification to the existing hardware.

1.4.3 Infra Red Vs Radio Transmission

https://en.wikipedia.org/wiki/Indoor_positioning_system
https://en.wikipedia.org/wiki/Indoor_positioning_system
https://en.wikipedia.org/wiki/Indoor_positioning_system

15

The following two different transmission technologies can be used to set up WLANs

Infra Red Light

 This technology uses diffuse, light reflected at Walls (Or) Directed Light if a Line of

Sight (LoS) exists between the sender and receiver.

 Senders can be simple Light Emitting Diodes (LEDs) or Laser Diodes

 Photo Diodes act as receivers

Advantages

 Simple and Cheap

 Available in many mobile Devices (Example : Laptops, Mobile Phones, etc.,)

 No License Needed

 Shielding is simple

Disadvantages

 Low Bandwidth

 In this, Direct Connection is gives only the good transaction quality and high data

rates.

Radio Transmission

Radio Transmission are used for data transmission with the specifications of GSM at 900,

1800 and 1900 MHz and using the license free ISM band at 2.5GHz.

Advantages

 Long term experiences made with radio transmission for Wide Area Networks.

Microwaves links and Mobile Cellular Phones are the examples of Radio

Transmission

 Coverage of larger areas and penetrate walls, furniture, etc.,

Disadvantages

 Shielding is not simple

 Very limited ranges of license free bands are available.

1.4.4 Features of WI-FI and WI-MAX

Introduction

Wi-Fi or WiFi is a technology for wireless local area networking with devices based on the IEEE

802.11 standards. Wi-Fi most commonly uses the 2.4 gigahertz (12 cm) UHF and 5 gigahertz

(6 cm) SHF ISM radio bands.

Wi-Fi Features

https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/Super_high_frequency
https://en.wikipedia.org/wiki/ISM_band

16

Convenient and everywhere

WiFi is a convenient technology and where the range station exists you are online during

travel you can equip with a Wi-Fi network and set up shop anyplace. We will automatically

connect to the internet if you are near hotspot. These days WiFi exist everywhere with all its

wonders.

Faster

With WiFi, we can get a high speed of internet because it is very fast than DSL and Cable

connection you can establish a Wifi network in small space now you don’t need any

professional installation just connect to a power outlet with an Ethernet cord, and start

browsing.

Secure

WiFi security system for Threats makes it more renewable and its tool protect your VPN and

secure web page. We can easily configure the device to take better performance. The

standard devices, embedded systems, and network security make it more powerful.

No Limitation

We can use a “WiFi” network with no limitation because it can connect you worldwide. Also,

we can easily reach to your requirements with WiFi networking applications because the

power consumption is very high as compared to another bandwidth.

High data transmission

Its range is 50 meters with 7 mbps speed for transfer of information. Its speed is 10

times faster than other technologies.

WI-MAX Features

Introduction

Wi-MAX (Worldwide Interoperability for Microwave Access) is a family of

wireless communication standards based on the IEEE 802.16 set of standards, which

provide multiple physical layer (PHY) and Media Access Control (MAC) options. Wi-MAX

was initially designed to provide 30 to 40 megabit-per-second data rates, with the 2011

update providing up to 1 Gbit/s for fixed stations.

The following are the some of its significant features

Long Range

Connectivity from long range is much highlighted feature of WiMax. Theoretically it is

believed that WiMax technology provides range up 30 mils (50 Km). However in practical

experience it is observed that it provides range up to 10 km which is still huge break through

in long range connectivity. Users can connect to WiMax base station using SUI from their

homes.

Mobility

https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/IEEE_802.16
http://wifinotes.com/wimax/wimax-features.html

17

Another significant feature of WiMax technology is the connectivity on move. This technology

amaze the world hence increasing the use of WiMax in some parts of the world dramatically.

Especially to the urban places where cables and other network equipments are not feasible

to install. Using its long range feature it provides connectivity on such area where other

means of high speed Internet are not available.

The other major mobility feature of WiMax technology is that connecting devices (Laptops,

PDA etc) can move in certain area and still be connected to the network.

Interfacing

WiMax radio signals are broadcasted to its subscribers from base stations. Base stations are

area where all necessary hardware is installed to provide WiMax with in its range. Since one

Base station covers limited range so connecting multiple base stations to each other

increase that much range for connectivity. Connecting multiple base stations to each other is

not big task and can be perform in few hours.

Accessibility

Accessing WiMax base station is not a difficult task, its long range capability provides

connectivity at home from base stations within the range. To get high speed internet it’s only

required to be because subscriber to WiMax service providers. They will provide you

appropriate hardware to become of the subscriber.

Ease of Installation

Installing the hardware is very easy; it is just plug and play. Hardware mostly connects

through USB ports or Ethernet and connection can be made by clicking just a button.

1.4.5 Bluetooth

Introduction

Bluetooth is a wireless technology standard for exchanging data over short distances from

fixed and mobile devices and building personal area networks (PANs). Bluetooth is managed

by the Bluetooth Special Interest Group (SIG), which has more than 30,000 member

companies in the areas of telecommunication, computing, networking, and consumer

electronics.

The Bluetooth SIG includes promoter member companies Microsoft, Ericssion, IBM, Intel,

Agere, Motorola, Nokia and Toshiba, Plus thousands of Associate and Adopter member

companies.

Bluetooth Applications

Bluetooth is designed to operate in an environment of many users. Up to eight devices can

communicate in a small network called a piconet. Ten of these piconets can coexist in the

same coverage range of the Bluetooth radio. To provide security, each link is encoded and

protected against eavesdropping and interference.

Bluetooth provides support for three general application areas using short-range wireless

connectivity:

https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group

18

Data and voice access points

Bluetooth facilitates real-time voice and data transmissions by providing effortless wireless

connection of portable and stationary communications devices.

Cable replacement

Bluetooth eliminates the need for numerous, often proprietary cable attachments for

connection of practically any kind of communications device. Connections are instant and

are maintained even when devices are not within line of sight. The range of each radio is

approximately 10 m, but can be extended to 100 m with an optional amplifier.

Ad hoc networking

A device equipped with a Bluetooth radio can establish instant connection to another

Bluetooth radio as soon as it comes into range.

Summary

 Firstly mobile communication deals with voice based conversation.

 At the beginning, the Light source is used to make communication with using of

mirrors.

 In 1960, with the Full Duplex services improved Mobile Telephone System was

developed.

 Late 1960, Bell Lab was introduced the Cellular with 12 channels which served 534

subscriber.

 In 1983, the Advanced Mobile Phone Systems (AMPS) functioned with 666 channels.

 Some of the mobile computing functions are User Mobility, Bearer Mobility, Host

Mobility and Service Mobility

 Some of the mobile computing devices are PDA, Tablet PC, Smart Phone, Cell

Phones, etc.,

 In mobile computing, the important network structures are Wireline, Wireless and

Adhoc

 Bluetooth, IrDA, Home RF and Wi-Fi are the important wireless technologies used in

mobiles and antennas

 Mobile computing architecture is made up of 3-tier. They are Presentation tier,

Application tier and Data tier

 There are two different transmission technologies can be used to set up WLANs.

They are Infrared Transmission and Radio Transmission

 WiFi is a convenient technology and where the range station exists that are online

during travel we can equip with a Wi-Fi network and set up anyplace.

 Connectivity from long range is much highlighted feature of WiMax. Practically, it

supported up to 10 km.

 Bluetooth is designed to operate in an environment of many users. Up to eight

devices can communicate in a small network.

http://wifinotes.com/wimax/wimax-features.html

19

Review Questions

Part-A

1. What is Mobile Communication?

2. Define : Cell

3. Define : Cell Spliting

4. Define : Cell Sectoring

5. Define : Handsoff

6. What is a Fading?

7. List out the mobile computing functions.

8. What are the mobile computing devices?

9. What are Wireless devices?

10. Define : Bluetooth

Part-B

1. What is a Wired Network?

2. What is a Wireless Network?

3. What is Adhoc Network?

4. Give the applications of WLAN.

5. Give the features of Wi-Fi

6. Give the features of Wi-Max

7. Give the applications of Bluetooth

Part-C

1. Give the introduction and history about Mobile Communication

2. List and explain the important terminologies of Mobile Communication.

3. What are Mobile Computing Functions? Explain

4. Discuss about the various Mobile Computing Devices.

5. Describe the various networks structure in Mobile Computing.

6. Give the comparison between Wired and Wireless Mechanisms

7. List out the various types of Wireless Communication Technologies used in Mobiles,
Antennas

8. With a neat diagram, explain the Architecture of Mobile Computing

9. Discuss about the Mobile Computing through Telephony

10. Give the applications of WLAN.

20

11. Give the comparisons of Infrared and Radio transmission

12. List out the features of Wi-Fi

13. List out the features of WI-MAX

14. Give the applications of Bluetooth.

21

UNIT - II : Introduction to GSM , SMS ,GPRS , Mobile OS

OBJECTIVES

At the end of the unit, students can

 Explain the internal operations of GSM with their usage

 Explain the CDMA benefits and differentiate with TDMA

 Explain the working principles of SMS, strength and its usages

 Define some of the Value Added Services through SMS

 Explain the data transmission through GPRS

 Define the applications of GPRS with its limitations

 Explain the features of 3G and 4G data services

 Describe the evolution of Mobile Operating Systems

 List the Mobile Operating Systems presently available in the market with their use

 Differentiate the Linux Kernel Based Mobile Operating System and its facilities

2 GLOBAL SYSTEMS FOR MOBILE COMMUNICATION (GSM)

2.1.1 Introduction

GSM stands for Global System for Mobile Communication. GSM is the most widely accepted

standard in telecommunications and it is implemented globally. It is a digital cellular

technology used for transmitting mobile voice and data services.

GSM is the name of a standardization group established in 1982 to create a common

European mobile telephone standard. GSM operates in the bands 850 MHz and 1900 MHz.

GSM makes use of narrowband Time Division Multiple Access (TDMA) technique for

transmitting signals. GSM was developed using digital technology. It has an ability to carry

64 kbps to 120 Mbps of data rates.

2.1.2 GSM Architecture

The GSM network architecture consists of three major subsystems. They are;

 Mobile Station

 Base Station Subsystem

 Network Subsystem

The overall architecture of GSM (Fig. 2.1) is

22

Fig. 2.1

1. Mobile Station (MS):

A mobile station communicates across the air interface with a base station transceiver in the

same cell in which the mobile subscriber unit is located. The MS has two elements. The

Mobile Equipment (ME) refers to the physical device, which comprises of transceiver, digital

signal processors, and the antenna. The second element of the MS is the GSM is the

Subscriber Identity Module (SIM). The SIM card is unique to the GSM system. It has a

memory of 32 KB.

2. Base Station Subsystem (BSS):

A base station subsystem consists of a base station controller and one or more base

transceiver station. Each Base Transceiver Station defines a single cell. A cell can have a

radius of between 100m to 35km, depending on the environment. A Base Station Controller

may be connected with a BTS. It may control multiple BTS units and hence multiple cells.

There are two main architectural elements in the BSS – the Base Transceiver Subsystem

(BTS) and the Base Station Controller (BSC). The interface that connects a BTS to a BSC is

called the A-bis interface. The interface between the BSC and the MSC is called the A

interface, which is standardized within GSM.

3. Network and switching subsystem (NSS)

The NSS is responsible for the network operation. The NSS has one hardware, Mobile

switching center and four software database elements. It provides the link between the

cellular network and the Public switched telecommunicates Networks (PSTN or ISDN or

Data Networks). The NSS controls handoffs between cells in different BSSs, authenticates

user and validates their accounts, and includes functions for enabling worldwide roaming of

mobile subscribers. In particular the switching subsystem consists of:

 Mobile switch center (MSC)

It performs the switching function of the system by controlling calls to and from other

telephone and data systems. It includes functions such as network interfacing and common

channel signalling.

23

 Home location register (HLR)

The HLR is database software that handles the management of the mobile subscriber

account. The HLR is the reference database that permanently stores data related to

subscribers, including subscriber’s service profile, location information, and activity status.

 Visitor location Register (VLR)

The VLR is temporary database software similar to the HLR identifying the mobile

subscribers visiting inside the coverage area of an MSC. The VLR assigns a Temporary

mobile subscriber Identity (TMSI) that is used to avoid using IMSI on the air. The visitor

location register maintains information about mobile subscriber that is currently physically in

the range covered by the switching center.

 Authentications center (Auc)

The AuC database holds different algorithms that are used for authentication and

encryptions of the mobile subscribers that verify the mobile user’s identity and ensure the

confidentiality of each call. The AuC holds the authentication and encryption keys for all the

subscribers in both the home and visitor location register.

 Equipment Identity Register (EIR)

The EIR is another database that keeps the information about the identity of mobile

equipment such the International mobile Equipment Identity (IMEI) that reveals the details

about the manufacturer, country of production, and device type. This information is used to

prevent calls from being misused, to prevent unauthorised or defective MSs, to report stolen

mobile phones

 Interworking Functions (IWF)

It is a system in the PLMN that allows for non speech communication between the GSM and

the other networks. The tasks of an IWF are particularly to adapt transmission parameters

and protocol conversions.

2.1.3 Introduction to CDMA

Code Division Multiple Access (CDMA) is a digital cellular technology used for mobile

communication. CDMA is the base on which access methods such as cdmaOne, CDMA-

2000, and WCDMA are built. The CDMA is a digital modulation and radio access system

that acts as a signature codes to arrange simultaneous and continuous access to a radio

network by multiple uses. CDMA cellular systems are deemed superior to FDMA and

TDMA, which is why CDMA plays a critical role in building efficient, robust, and secure radio

communication systems.

CDMA is altering the face of cellular and PCS communication by:

 Dramatically improving the telephone traffic capacity

 Dramatically improving the voice quality and eliminating the audible effects of

multipath fading

 Reducing the incidence of dropped calls due to handoff failures

24

 Providing reliable transport mechanism for data communications, such as facsimile

and internet traffic

 Reducing the number of sites needed to support any given amount of traffic

 Simplifying site selection

 Reducing deployment and operating costs because fewer cell sites are needed

 Reducing average transmitted power

 Reducing interference to other electronic devices

 Reducing potential health risks

2.2 Short Message Service (SMS)

2.2.1 Mobile computing over SMS

 GSM supports data access over Circuit Switched Data. GSM is digitized but not

packetized. In case of CSD, a circuit established and the user is charged base on the time

the circuit is active and not on the number of packets transacted. GPRS also known as

2.5G, which is the next phase within the evolution of GSM, supports data over packets.

WAP is a data service supported by GPRS and GSM to access Internet and remote data

services. A unique data service of GSM is the Short Message Service (SMS). SMS enables

sending and receiving text messages to and from, GSM mobile phones.

2.2.2 Short Message Service

 Today, SMS is the most popular data bearer / service with in GSM with an average of

one billion SMS messages transacted every day around the world. Short Message Service

is a mechanism of delivery of short messages over the mobile networks. It is a store and

forward way of transmitting messages to and from mobiles. The message (text only) from

the sending mobile is stored in a Central Short Message Centre, which then forwards it to

the destination mobile. This means that in the case that the recipient is not available the

short message is stored and can be sent later.

 Each short message is up to 160 characters. These characters can be text or binary

Non-Text Short messages. SMS used signaling channels as opposed to dedicated

channels, so that these messages can be sent / received simultaneously with the voice /

data / fax service over a GSM network.

 SMS supports national and international roaming. This means that you can send

short messages to any other GSM mobile user around the world.

2.2.3 Strength of SMS

The following are the Strength of SMS

1. Always Connected

As SMS uses the SS7 signaling channel for its data traffic, the bearer media is always on.

Users cannot switch OFF, BAR or DIVERT any SMS message. SMS message is delivered

to the Mobile Station without any interruption to the ongoing call.

25

2. Self Configurable and last mile problem resistant

SMS is self configurable and subscriber is always connected to the SMS bearer irrespective

of the home and visiting network configuration.

3. Asynchronous

SMS is completely an Asynchronous. In case of SMS, even if the recipient is out of service

the transmission will not be abandoned and the particular SMS will be placed in the

message queue.

4. Stateless

SMS is session-less and stateless as every SMS message is unidirectional and independent

of any contest. This makes SMS the best bearer for notifications, alerts and paging.

5. Omnibus nature of SMS

SMS uses SS7 signaling channel which is available throughout the world.

6. Non-repudiable

SMS message carries the Service Center and the source MSISDN as a part of the message

header through which any SMS can prove beyond doubt its origin.

2.2.4 SMS Architecture

At the beginning, if a user sends a SMS, the SMS first deliver from the MS which is know as

Mobile Station A to SM-SC (Short Message Service Center) Via the Base Station System

(BSS), and then it catch up to the Mobile Station center(MSC) and finally combine with

Interworking MSC (IW-MSC). The following Figure (Fig. 2.2) explain the architecture of SMS.

SMP

P

SMP

P

http://en.wikipedia.org/wiki/Short_message_service_center

26

SMS

Broker

Content Server

and Software

Application

Mobile

users

 Service Provider Aggregator Content

Provider

Fig. 2.2

Content aggregator uses the SMPP (Short Message Peer-to-peer Protocol) to maintain

connections with carrier networks.

Content Providers

 A mobile content provider is an entity that provides value-added content and

applications for mobile devices.

 When a mobile phone user sends an interactive text message to retrieve information,

the content provider returns the information through the aggregator. The aggregator is

responsible for transmitting the message to the end user.

SMS Centers

When the user sends a text message to another user, the phone actually sends the

message to the SMSC, which stores the message and then delivers it, when the recipient is

on the network. This is the store and forward operation.

The use of Short Message Service Center (SM-SC) to carry ahead the SMS message to the

GSM network through a definite GSM-MSC called the Short Message Service gateway MSC

(SMS-GMSC). The SM-SC is allowed to link with several GSM networks and to several SM-

GMSCs in a GSM network. The SMS-GMSC come across the contemporary MSC of the

message acceptor and then step ahead the SMS message to that Mobile Station center,

pursue the Global System for Mobile Communication (GSM) roaming protocol. The MSC

then Publish the SMS through the Base Station System (BSS) to the destination MSB.

SMP

P

27

2.2.5 Value added services through SMS

 Value Added Services (VAS) can be defined as services, which share one or more of

the following characteristics.

 Supplementary service but adds value to total service offering

 Stimulates incremental demand for core services offering

 Stands alone in terms of profitability and revenue generation potential

 Can sometimes stand-alone operationally

 Does not cannibalize basic service unless clearly favorable

 Can be an add-on basic service, and as such, may be sold at a premium price

 May provide operational and / or administrative synergy between or among other

services and not merely for diversification.

Some examples

 News/Stock Quotes Service

 Session-based Chat Application

 Email through SMS

 Health Care Services

 Micro-payment Services

2.3 GENERAL PACKET RADIO SERVICE (GPRS)

2.3.1 Introduction

General Packet Radio Services (GPRS) is a packet-based wireless communication service

that promises data rates from 56 up to 114 Kbps and continuous connection to the Internet

for mobile phone and computer users. The higher data rates allow users to take part in video

conferences and interact with multimedia Web sites and similar applications using

mobile handheld devices as well as notebook computers. GPRS is based on Global System

for Mobile (GSM) communication and complements existing services such circuit-

switched cellular phone connections and the Short Message Service (SMS).

GPRS packet-based services cost users less than circuit-switched services since

communication channels are being used on a shared-use, as-packets-are-needed basis

rather than dedicated to only one user at a time. It is also easier to make applications

available to mobile users because the faster data rate means that middleware currently

needed to adapt applications to the slower speed of wireless systems are no longer be

needed. As GPRS has become more widely available, along with other 2.5G

and 3G services, mobile users of Virtual Private Networks (VPNs) have been able to access

http://searchnetworking.techtarget.com/definition/packet
http://searchmobilecomputing.techtarget.com/definition/wireless
http://searchnetworking.techtarget.com/definition/Kbps
http://searchmobilecomputing.techtarget.com/definition/cellular-telephone
http://searchmobilecomputing.techtarget.com/definition/handheld
http://searchmobilecomputing.techtarget.com/definition/GSM
http://searchnetworking.techtarget.com/definition/circuit-switched
http://searchnetworking.techtarget.com/definition/circuit-switched
http://searchmobilecomputing.techtarget.com/definition/Short-Message-Service
http://searchsoa.techtarget.com/definition/middleware
http://searchtelecom.techtarget.com/definition/3G
http://searchenterprisewan.techtarget.com/definition/virtual-private-network

28

the private network continuously over wireless rather than through a rooted dial-up

connection.

2.3.2 GPRS Packet data Network

PDP stands for Packet Data Protocol. The PDP addresses are network layer addresses

(Open Standards Interconnect [OSI] model Layer 3). GPRS systems support both X.25 and

IP network layer protocols. Therefore, PDP addresses can be X.25, IP, or both.

Each PDP address is anchored at a Gateway GPRS Support Node (GGSN), as shown in

figure (Fig. 2.3) below. All packet data traffic sent from the public packet data network for the

PDP address goes through the gateway (GGSN).

Fig. 2.3

The public packet data network is only concerned that the address belongs to a specific

GGSN. The GGSN hides the mobility of the station from the rest of the packet data network

and from computers connected to the public packet data network.

Statically assigned PDP addresses are usually anchored at a GGSN in the subscriber's

home network. Conversely, dynamically assigned PDP addresses can be anchored either in

the subscriber's home network or the network that the user is visiting.

When a MS is already attached to a SGSN and it is about to transfer data, it must activate a

PDP address. Activating a PDP address establishes an association between the current

SGSN of mobile device and the GGSN that anchors the PDP address.

The record kept by the SGSN and the GGSN regarding this association is called the PDP

context.

It is important to understand the difference between a MS attaching to a SGSN and a MS

activating a PDP address. A single MS attaches to only one SGSN, however, it may have

multiple PDP addresses that are all active at the same time.

Each of the addresses may be anchored to a different GGSN. If packets arrive from the

public packet data network at a GGSN for a specific PDP address and the GGSN does not

have an active PDP context corresponding to that address, it may simply discard the

29

packets. Conversely, the GGSN may attempt to activate a PDP context with a MS if the

address is statically assigned to a particular mobile device.

2.3.3 Applications for GPRS

Some of the important characteristics of GPRS are Mobility, Immediacy and Localization.

With these characteristics, mobile subscribers can develop varied applications.

In general, it can be divided into two high-level categories:

 Corporation

 Consumer

These two levels further include:

 Communications - E-mail, fax, unified messaging and intranet/internet access, etc.

 Value-added services - Information services and games, etc.

 E-commerce - Retail, ticket purchasing, banking and financial trading, etc.

 Location-based applications - Navigation, traffic conditions, airline/rail schedules

and location finder, etc.

 Vertical applications - Freight delivery, fleet management and sales-force

automation.

 Advertising - Advertising may be location sensitive. For example, a user entering a

mall can receive advertisements specific to the stores in that mall.

2.3.3.1 Generic Applications

 It is like information services, Internet access, email, Web Browsing, which are very

useful while mobile

 Due to high bandwidth mobile Internet browsing will be better suited to GPRS

 Access to corporate Intranet can add new dimension to mobile workers.

 Banking over wireless is another generic applications people may like to use while

mobile

2.3.3.2 GPRS Specific Applications

1. Chat

It is used as means to communicate and discuss matters of common interest. GPRS will

offer ubi quitous chat by integrating Internet Chat and Wireless Chat using SMS and WAP.

2. Multimedia Services

 Multimedia objects like photographs, pictures postcards, greeting cards and

presentations, static web pages can be sent and received over the mobile network.

 It can be used for monitoring parking lots or building sites for intruders and thieves.

30

 This can also be used by law enforcement agents, journalists and insurance agents

for sending images of accident site.

3. Virtual Private Network

 GPRS is used to provide VPN services.

 As the bandwidth is higher so many banks in India are migrating to GPRS-based

networks.

 This is expected to reduce the transaction time by about 25%

4. Vehicle Positioning

 This application integrates GPS that tell people where they are.

 Anyone with a GPS receiver can receive their satellite position and thereby find out

where they are.

 Vehicle positioning applications can be used to deliver several services including

remote vehicle diagnostics.

2.3.4 Limitations of GPRS

Although GPRS will provide better data rates than is currently available, there are some

limitations.

 Speeds of 177.2kbps would require a user to use all eight timeslots without any error

protection - which simply won't happen. Initial terminals are likely to use only 1-3

timeslots anyway, limiting the available bandwidth to a GPRS user.

 When GPRS packets are sent to a destination they are sent in all different directions

- allowing for the potential for one or some of those packets to be corrupted or even

lost altogether during the data transmission over the radio link. This is inherent in

wireless packet technologies so data integrity and retransmission strategies are

incorporated - which in turn result in potential transit delays.

 Although available radio resource can be concurrently shared between several users,

an increase in the numbers of users will slow data services down for each user.

2.3.5 FEATURES OF 3G AND 4G DATA SERVICE

2.3.5.1 Features of 3G

The ITU (International Telecommunication Union) has proposed 3G telecommunications

standards to provide cost efficient high quality, wireless multimedia applications and

enhanced wireless communications.

The features of 3G can be divided into two categories. One is data rates and the other is

security.

 The main feature of 3G technology is that it supports greater voice and data capacity

and high data transmission at low-cost. 3G mobiles can operate on 2G and 3G

technologies.

31

 The second major feature is the security: 3G offers greater security features than 2G

like Network Access Security, Network Domain Security, User Domain Security and

Application Security.

 This technology provides localized services for accessing traffic and weather

updates. Video calls and video conference is another major feature in 3G mobile

technology. These features reduce the communication barriers between people that

were not sacked even with mobile phones.

Date transfer rates are high and can support even live TV channels over phone. Online

media is another exciting feature in 3G mobiles. 3G mobiles highly attract the music lovers

as they can listen to music and watch videos online and can download huge files with in less

time.

2.3.5.2 Features of 4G

 4Gis referred to the Fourth Generation of Mobile Communications Technology, which

combines 3G and WLAN into one and is able to transmit high-quality video images, and the

quality of image transmission comparable to high-definition television technology products.

Some of the important features are;

 This system based on orthogonal frequency division multiplexing (OFDM) as a core

technology. The characteristics of the OFDM technology network architecture is

highly scalable, and has a good anti-noise performance and anti-channel

interference, can provide a higher quality of wireless data technology (high rate,

delay), and better cost performance, able to provide better solutions for 4G wireless

network.

 4G communications gives the most impressive features than it has a faster wireless

communication speed, even the highest you can reach up to 100Mbps speed

transmission of wireless data.

 It is estimated that each 4G channel will occupy the 100MHz spectrum, equivalent to

20 times the W-CDMA 3G network.

 The 4G mobile communications have high intelligence, not only on the performance

of 4G mobile terminals in design and operation, but also on the menu and scroll

operation which are greatly reduced.

 The 4G mobile communication system in the future should have global roaming,

open interfaces, and be able to talk to a variety of network interconnection, terminal

diversification as well as a smooth transition from the second generation of the

characteristics.

 It has a new integration technology such as the OFDM / CDMA, digital audio

broadcast.

 It has many powerful breakthrough technology developed process, such as fiber

optic communications, cover different types of communication interface, which

means that the 4G use routing technology (Routing) based network architecture. Due

to the use of several different techniques, it is much more effective than the 2G

and 3G system.

http://www.4gltemall.com/4g-usb-modem.html
http://www.4gltemall.com/3g-usb-modem.html

32

2.4 MOBILE OPERATING SYSTEMS

2.4.1 Evolution of Mobile Operating System

A mobile operating system, also called a mobile OS, is an Operating System that is

specifically designed to run on mobile devices such as mobile phones, Smart phones, PDAs,

tablet computers and other handheld devices. Naturally, the evolution process is driven by

the technology advancements in Hardware, Software and the Internet. The following table

explains the evolution of Mobile Operating System

Year Month Product Name

1996 --- Palm OS 1.0

1997 OCT Palm OS 2.0

1998 SEP Palm OS 3.0

2000 --- Pocket PC 2000

2001
--- Pocket PC 2002

JUN Palm OS 4.0

2002 JUN Palm OS 5.0

2003 --- Windows Mobile 2003

2004
JUN Windows Mobile 2003 SE

 Palm OS Cobalt

2005

MAY Windows Mobile 5

OCT Blackberry OS 4.1

 Google Acquired Android

2007

JAN iPhone

FEB Windows Mobile 6

APR Blackberry OS 4.2

2008

JUN iPhone OS 2.0

SEP Blackberry OS 4.5

--- Windows Mobile 6.1

--- Android 1.0

--- Symbian OS

2009

FEB Android 1.1

OCT Blackberry OS 5

MAY Windows Mobile 6.5

NOV Samsung Bada 1.0

JUN iPhone OS 3.0

--- HP WB OS

APR Android 1.5 (Cupcake)

Sep Android 1.6 (Donut)

OCT Android 2.0 / 2.1 (Éclair)

http://www.webopedia.com/TERM/M/mobile_operating_system.html
http://www.webopedia.com/TERM/O/operating_system.html

33

2010

JUN iPhone

AUG Blackberry OS 6

OCT Windows Phone 7

MAY Android 2.2 (Froyo)

DEC Android 2.3 (GingerBread)

 Symbian^2 OS

FEB Symbian^3 OS

2011 --- Android 3.0 (HoneyComb)

2.4.2 Handset Manufacturers and their Mobile OS

 There are phones of every shape and size from a single manufacturer and there are

a lot of manufacturers. Since it’s the age of Smart Phones, Mobile Phones are now almost

powerful. But then again, hardware specifications aside, the heart and soul of mobile phones

are the operating systems. Some operating systems are open source and available to all

manufactures, and some are closed source and used only by one manufacturer. Each

differs in the look, feel, utilization of hardware, number of applications, etc., But most of the

operating system are usually cross-platform. Here, we list some of the handset

manufacturers and their mobile OS.

Sno. Handset Manufacturers Mobile OS Special Features

1. Samsung Electronics Bada OS Multipoint-touch, 3D graphics and of
course, application downloads and
installation.

2. Blackberry Blackberry OS Synchronization with Microsoft
Exchange, Lotus Domino, Novell
GroupWise email and other business
software

3. Apple iPhone OS (IOS) IOS is a closed source, proprietary
mobile operating system that is used on
a wide range of Apple devices that
include mobile phones, portable music
players and a tablet PC.

4. Nokia and Intel MeeGo OS Using Intel Atom and ARMv7
architecture

5. Nokia Symbian OS High-level of integration with
communication and personal
information management (PIM)
functionality

6. HP webOS improving security features and
management

7. Microsoft Windows Phone Integration with Microsoft Services like
Xbox Live, Windows Live and Zune
along with third party applications like
Facebook and Google accounts.

2.4.3 Mobile OS and their features

http://www.webopedia.com/TERM/P/personal_information_manager.html

34

Mobile OS Features

Palm OS 1.0
RIM Applications Address, Date Book, Memo
Pad and To Do List

Palm OS 2.0 Mail and Expense

Palm OS 3.0
Hotsync Support, Web Clipping support, native
8 bit color support

Pocket PC 2002 MSN Messenger, Media Player 8 Enhanced UI

Palm OS 4.0 External File Systems, 16-bit Color Screens

Palm OS 5.0 PACE Emulator, Bluetooth Emulator

Windows Mobile 2003
Bluetooth Integration, Pocket Internet Explorer,
Windows Media Player 9.0

Windows Mobile 2003 SE
SE Portrait and Landscape Switching for
Pocket PCs and WPA

Palm OS Cobalt
Telecommunication, Wi-Fi and Bluetooth
Connectivity

Windows Mobile 5 Windows Media Player 10, GPS Interface

Windows Mobile 6
.NET Compact Framework V2 SP2, Microsoft
SQL Server 2005 Compact Edition Windows
Live

Blackberry OS 4.2
Voice Notes Option, Email and SMS in
separate folders

iPhone OS 2.0
Third-Party application Support, Sync Google
Contacts

Blackberry OS 4.5
HTML e-mails, Faster Performance and
improved Multi-tasking, Microsoft Office
Documents ToGo

Windows Mobile 6.1
Threaded SMS, Full Page Zooming in IE and
Domain Enroll

Symbian OS
Desktop interactive Widgets, Facebook IM
Chat

Android 1.1
Support for saving attachments from MMS,
Marquee in Layouts, API Changes

Blackberry OS 5
Wireless Sync, Blackberry Enterprise Server 4,
almost

Windows Mobile 6.5
Internet Explorer Mobile 6 and Multi touch
Support

Samsung Bada 1.0
Multipoint-touch, 3D graphics and of course,
application downloads and installation.

iPhone OS 3.0
Push notifications, cut, copy and paste, Turn-
by-Turn Navigation, Voice Memos

HP WB OS
Synergy App, Multi-touch gestures and Multi-
tasking

Android 1.5 (Cupcake)
Bluetooth A2DP and AVRCP support,
Uploading videos to YouTube and Pictures to
Picasa

Android 1.6 (Donut) WVGA Screen resolution support, Google free

35

turn-by-turn navigation

Android 2.0 / 2.1 (Éclair)
HTMLS support, Microsoft Exchange Server,
Bluetooth 2.1

iPhone Multi-tasking, folders

Blackberry OS 6
New Media Interface, Stronger Social Media
integration, Multiple Contact Lists, Trackpad
support for Swipe gestures

Windows Phone 7
Tiled UL, loud-based service support,
Multtasking

Android 2.2 (Froyo)
USB tethering and Wi-Fi hotspot functionality,
Adobe Fash 10.1 support

Android 2.3 (GingerBread)
Multi-touch software keyboard, Support for
extra-large screen sizes and resolutions

Symbian^3 OS
Native Webkit based browser, 2D and 3D
graphics architecture, UI improvements and
support for external displays through HDMI.

Android 3.0 (HoneyComb)
Optimized tablet support with a new user
interface. Three dimensional desktop, video
chat with Gtalk Support.

2.4.4 Linux Kernel based Mobile OS

 Linux Kernel based mobile operating system is Android OS. It is developed by

Google Corporation. Android OS give the open choice to the user to modify and add any

new applications without even bring on the notice of Google.

Android is the Linux based technology tat uses Unix as an Operating System. Any one can

upload a new application on the Android Platform as App store to entire free or payable.

These applications uploads by the users can be easily download by the users and enjoy the

additional games, interactive media and business parts.

 Thus the flexibility of Android technology makes it more convenient to the operating

system to have this as a base for smart phones.

Summary

 GSM is the most widely accepted standard in telecommunications and it is

implemented globally.

 It is a digital cellular technology used for transmitting mobile voice and data services.

 The GSM network architecture consists of three major subsystems. They are Mobile

Station, Base Station Subsystem and Network Subsystem

 Code Division Multiple Access (CDMA) is a digital cellular technology used for mobile

communication.

 CDMA cellular systems are deemed superior to FDMA and TDMA, which is why

CDMA plays a critical role in building efficient, robust, and secure radio

communication systems.

36

 Short Message Service is a mechanism of delivery of short messages over the

mobile networks. It is a store and forward way of transmitting messages to and from

mobiles.

 Each short message is up to 160 characters.

 General Packet Radio Services (GPRS) is a packet-based wireless communication

service that promises data rates from 56 up to 114 Kbps and continuous connection

to the Internet for mobile phone and computer users.

 PDP stands for Packet Data Protocol. The PDP addresses are network layer

addresses

 In general, GPRS can be divided into two high-level categories. They are Corporation

and Consumer. Further it divided into Communications, Value-added services, E-

commerce, Location-based applications, Vertical applications , Advertising

 Some of the applications of GPRS are Chat, Vehicle Positioning, Multimedia

Services, etc.,

 The ITU (International Telecommunication Union) has proposed 3G

telecommunications standards to provide cost efficient high quality, wireless

multimedia applications and enhanced wireless communications.

 4Gis referred to the Fourth Generation of Mobile Communications Technology, which

combines 3G and WLAN into one and is able to transmit high-quality video images,

and the quality of image transmission comparable to high-definition television

technology products.

 Naturally, the evolution process is driven by the technology advancements in

Hardware, Software and the Internet.

 Some of the latest mobile operating systems are Palm OS, Windows OS, Blackberry

OS, Android OS, Symbian OS

 Android is the Linux based mobile operating system developed by Google

Corporation that gives the open choice to the user to modify and add any new

applications without even bring on the notice of Google.

http://searchnetworking.techtarget.com/definition/packet
http://searchmobilecomputing.techtarget.com/definition/wireless
http://searchnetworking.techtarget.com/definition/Kbps
http://searchmobilecomputing.techtarget.com/definition/cellular-telephone

37

Review Questions

PART-A

1. Define : GSM

2. What is CDMA?

3. Define : SMS

4. What is GPRS?

5. List some handset manufacturers and their mobile OS

6. Expand : VAS

7. Give any two features in Android OS

PART-B

1. Discuss any two basic entities in GSM

2. Discuss any three strength of SMS

3. Discuss any two Generic Applications of GPRS

4. List out the limitations of GPRS

PART-C

1. With a neat diagram, explain the architecture of GSM

2. Explain the SMS architecture with a neat diagram.

3. List some of the Value Added Services through SMS with an example

4. List and explain the GPRS Specific applications

5. Give the features of 3G data service

6. Give the features of 4G data service

7. Explain the evolution of Mobile Operating System.

8. List out the different mobile operating systems with their features

9. Explain the Linux Kernel based Mobile OS in detail

-- -

38

UNIT-III

INTRODUCTION TO ANDROID

OBJECTIVES

At the end of the unit, students can

 Explain Andriod versions and features

 Explain architecture of Android

 Explain Andriod SDK & SDT

 Explain activities and Intents

 Explain Views and viewgroups

 Explain Different types of Layouts.

 Explain UI Notifications

3.1. ANDROID

 Android is a mobile operating system that is based on a modified version of Linux.

 It was originally developed by a startup of the same name, Android, Inc. In 2005, as

part of its strategy to enter the mobile space, Google purchased Android and took over

its development work (as well as its development team).

 Google wanted Android to be open and free; hence, most of the Android code was

released under the open-source Apache License, which means that anyone who wants

to use Android can do so by downloading the full Android source code.

 Moreover, vendors (typically hardware manufacturers) can add their own proprietary

extensions to Android and customize Android to differentiate their products from

others.

 This simple development model makes Android very attractive and has thus piqued

the interest of many vendors.

 This has been especially true for companies affected by the phenomenon of Apple’s

iPhone, a hugely successful product that revolutionized the smart phone industry.

 The main advantage of adopting Android is that it offers a unified approach to

application development.

 Developers need only develop for Android, and their applications should be able to

run on numerous different devices, as long as the devices are powered using Android.

39

3.1.1. Android versions

3.1.2. Features of Android

As Android is open source and freely available to manufacturers for customization, there

are no fixed hardware and software configurations. However, Android itself supports the

following features:

 Storage :Uses SQLite, a lightweight relational database, for data storage.

 Connectivity :Supports GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth

(includes A2DP and AVRCP), WiFi, LTE, and WiMAX.

 Messaging :Supports both SMS and MMS.

 Web browser: Based on the open-source WebKit, together with Chrome’s V8

JavaScript engine

 Media support :Includes support for the following media: H.263, H.264 (in 3GP or

MP4 container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC

(in MP4 or 3GP container), MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and

BMP

 Hardware : support Accelerometer Sensor, Camera, Digital Compass, Proximity

Sensor, and GPS.

 Multi-touch : Supports multi-touch screens

 Multi-tasking : Supportsmulti-tasking applications.

 Flash support : Android 2.3 supports Flash 10.1.

 Tethering :Supports sharing of Internet connections as a wired/wireless hotspot

40

3.1.3. Architecture of Android

The Android OS is roughly divided into five sections in four main layers:

Linux kernel — This is the kernel on which Android is based. This layer contains all the

low-level device drivers for the various hardware components of an Android device.

Libraries — These contain all the code that provides the main features of an Android OS.

For example, the SQLite library provides database support so that an application can use it

for data storage. The WebKit library provides functionalities for web browsing.

Android runtime — At the same layer as the libraries, the Android runtime provides a set of

core libraries that enable developers to write Android apps using the Java programming

language. The Android runtime also includes the Dalvik virtual machine, which enables

every Android application to run in its own process, with its own instance of the Dalvik

virtual machine (Android applications are compiled into the Dalvik executables). Dalvik is a

specialized virtual machine designed specifically for Android and optimized for battery-

powered mobile devices with limited memory and CPU.

Application framework — Exposes the various capabilities of the Android OS to

application developers so that they can make use of them in their applications.

Applications — At this top layer, you will find applications that ship with the Android

device (such as Phone, Contacts, Browser, etc.), as well as applications that you download

and install from the Android Market.

41

3.1.4.The Android market

 One of the main factors determining the success of a smartphone platform is the

applications that support it.

 It is clear from the success of the iPhone that applications play a very vital role in

determining whether a new platform swims or sinks. In addition, making these

applications accessible to the general user is extremely important.

 As such, in August 2008, Google announced the Android Market, an online

application store for Android devices, and made it available to users in October 2008.

 Using the Market application that is preinstalled on their Android device, users can

simply download third-party applications directly onto their devices.

 Both paid and free applications are supported on the Android Market, though

paid applications are available only to users in certain countries due to legal issues.

 Similarly, in some countries, users can buy paid applications from the Android

Market, but developers cannot sell in that country.

 As an example, at the time of writing, users in India can buy apps from the Android

Market, but developers in India cannot sell apps on the Android Market.

 The reverse may also be true; for example, users in South Korea cannot buy apps, but

developers in South Korea can sell apps on the Android Market.

3.1.5. Android runtime (Dalvik Virtual Machine)

 The Android runtime provides a set of core libraries that enable developers to write

Android apps using the Java programming language.

 The Android runtime also includes the Dalvik virtual machine, which enables every

Android application to run in its own process, with its own instance of the Dalvik

virtual machine (Android applications are compiled into the Dalvik executables).

 Dalvik is a specialized virtual machine designed specifically for Android and

optimized for battery-powered mobile devices with limited memory and CPU.

3.2.ANDROID SDK AND ADT

3.2.1.ANDROID SDK

 The Android SDK contains a debugger, libraries, an emulator, documentation, sample

code, and tutorials.

 You can download the Android SDK from

http://developer.android.com/sdk/index.html.

42

 Once the SDK is downloaded, unzip its content (the android-sdk-windows folder)

into the C:\Android\ folder, or whatever name you have given to the folder you just

created.

3.2.2.ANDROID DEVELOPMENT TOOLS (ADT) [INSTALLING AND

CONFIGURING ANDROID]

The Android Development Tools (ADT) plug-in for Eclipse is an extension to the Eclipse

IDE that supports the creation and debugging of Android applications. Using the ADT, you

will be able to do the following in Eclipse:

 Create new Android application projects.

 Access the tools for accessing your Android emulators and devices.

 Compile and debug Android applications.

 Export Android applications into Android Packages (APK).

 Create digital certificates for code-signing your APK.

1.To install the ADT, first launch Eclipse by double-clicking on the eclipse.exe file located

in the eclipse folder.

2.When Eclipse is first started, you will be prompted for a folder to use as your workspace. In

Eclipse, a workspace is a folder where you store all your projects. Take the default suggested

and click OK.

3.Once Eclipse is up and running, select the Help ➪ Install New Software… menu item

4.In the Install window that appears, type http://dl-ssl.google.com/android/eclipse in the text

box

43

5.After a while, you will see the Developer Tools item appear in the middle of the window

6.Expand it, and it will reveal its content: Android DDMS, Android Development Tools, and

Android Hierarchy Viewer. Check all of them and click Next.When you see the installation

details, click Next.

44

7.You will be asked to review the licenses for the tools. Check the option to accept the

license agreements ,Click Finish to continue.

8.Eclipse will now proceed to download the tools from the Internet and install them .

9.Once the ADT is installed, you will be prompted to restart Eclipse. After doing so, go to

Window ➪ Preferences

10.In the Preferences window that appears, select Android. You will see an error message

saying that the SDK has not been set up .Click OK to dismiss it.

45

11.Enter the location of the Android SDK folder. In this example, it would be C:\Android\

android-sdk-windows. Click OK.

3.2.3.ANDROID VIRTUAL DEVICES (AVDS)

 AVD stands for Android Virtual Devices. An AVD is an emulator instance that

enables you to model an actual device.

 Each AVD consists of a hardware profile, a mapping to a system image, as well as

emulated storage, such as a secure digital (SD) card.

 You can create as many AVDs as you want in order to test your applications with

several different confi gurations. This testing is important to confi rm the behavior of

your application when it is run on different devices with varying capabilities.

Procedure:

1. To create an AVD, go to Windows ➪ Android SDK and AVD Manager.

2. Select the Available packages option in the left pane and expand the package name

shown in the right pane.

46

3. Check the relevant tools, documentation, and platforms you need for your project.

Once you have selected the items you want, click the Install Selected button to

download them.

4. Each version of the Android OS is identifi ed by an API level number. For example,

Android 2.3 is level 9 (API 9), while Android 2.2 is level 8 (API 8), and so on. For

each level, two platforms are available. For example, level 9 offers the

following:SDK Platform Android 2.3 Google APIs by Google Inc.

5. The key difference between the two is that the Google APIs platform contains the

 Google Maps library.

6. Click the Virtual Devices item in the left pane of the window. Then click the New…

button located in the right pane of the window.

7. In the Create new Android Virtual Device (AVD) window, enter the items .

8. Click the Create AVD button when you are done.

47

3.3.ACTIVITIES AND INTENTS

3.3.1.Understanding activities

To create an activity, you create a Java class that extends the Activity base class:

packagenet.learn2develop.Activities;

importandroid.app.Activity;

importandroid.os.Bundle;

public class MainActivity extends Activity {

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

}

}

Your activity class would then load its UI component using the XML file defined in your

res/layout folder. In this example, you would load the UI from the main.xml file:

 setContentView(R.layout.main);

Every activity you have in your application must be declared in your AndroidManifest.xml

file, like this:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<manifestxmlns:android=”http://schemas.android.com/apk/res/android”

package= ”net.learn2develop.Activities”

android:versionCode=”1”

android:versionName=”1.0”>

<applicationandroid:icon= ”@drawable/icon”

 android:label=”@string/app_name” >

 <activity android:name=”.MainActivity”

 android:label=”@string/app_name” >

<intent-filter>

<action android:name=”android.intent.action.MAIN” />

<category

android:name= ”android.intent.category.LAUNCHER” />

48

</intent-filter>

 </activity>

</application>

<uses-sdkandroid:minSdkVersion=”9” />

</manifest>

The Activity base class defines a series of events that governs the life cycle of an activity.

The Activity class defines the following events:

onCreate() — Called when the activity is first created

onStart() — Called when the activity becomes visible to the user

onResume() — Called when the activity starts interacting with the user

onPause() — Called when the current activity is being paused and the previous

activity is being resumed

onStop() — Called when the activity is no longer visible to the user

onDestroy() — Called before the activity is destroyed by the system (either

manually or by the system to conserve memory)

onRestart() — Called when the activity has been stopped and is restarting again

49

Example:

1 . Using Eclipse, create a new Android project and name it

2 . In the MainActivity.java file, add the following statements

packagenet.learn2develop.Activities;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.util.Log;

publicclassMainActivityextendsActivity {

String tag = “Events” ;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Log.d(tag , “In the onCreate() event”);

}

public void onStart()

{

 super.onStart();

 Log.d(tag , “In the onStart() event”);

}

public void onRestart()

50

{

 super.onRestart();

 Log.d(tag , “In the onRestart() event”);

}

public void onResume()

{

 super.onResume();

 Log.d(tag , “In the onResume() event”);

}

public void onPause()

{

 super.onPause();

 Log.d(tag , “In the onPause() event”);

}

public void onStop()

{

 super.onStop();

 Log.d(tag , “In the onStop() event”);

}

public void onDestroy()

{

 super.onDestroy();

 Log.d(tag , “In the onDestroy() event”);

}

}

 3 . Press F11 to debug the application on the Android Emulator.

 4 . When the activity is first loaded, you should see the following in the LogCat window

12-2813:45:28.115: DEBUG/Events(334): Inthe onCreate()event

12-2813:45:28.115: DEBUG/Events(334): Inthe onStart()event

12-2813:45:28.115: DEBUG/Events(334): Inthe onResume()event

5 . When you now press the back button on the Android Emulator, observe that the

following is printed:

12-2813:59:46.266:DEBUG/Events(334):IntheonPause()event

51

12-2813:59:46.806:DEBUG/Events(334):IntheonStop()event

12-2813:59:46.806:DEBUG/Events(334):IntheonDestroy()event

6 . Click the Home button and hold it there. Click the Activities icon and observe the

following:

12-2814:00:54.115:DEBUG/Events(334):IntheonCreate()event

12-2814:00:54.156:DEBUG/Events(334):IntheonStart()event

12-2814:00:54.156:DEBUG/Events(334):IntheonResume()event

7 . Press the Phone button on the Android Emulator so that the activity is pushed to the

background. Observe the output in the LogCat window:

12-2814:01:16.515:DEBUG/Events(334):IntheonPause()event

12-2814:01:17.135:DEBUG/Events(334):IntheonStop()event

8 . Notice that the onDestroy() event is not called, indicating that the activity is still in

memory. Exit the phone dialer by pressing the Back button. The activity is now visible again.

Observe the output in the LogCat window:

12-2814:02:17.255:DEBUG/Events(334):IntheonRestart()event

12-2814:02:17.255:DEBUG/Events(334):IntheonStart()event

12-2814:02:17.255:DEBUG/Events(334):IntheonResume()event

The onRestart() event is now fi red, followed by the onStart() and onResume() events.

Working Principle:

 As you can see from this simple experiment, an activity is destroyed when you press

the Back button.

 At this point, note that the onPause() event is called in both scenarios — when an

activity is sent to the background, as well as when it is killed when the user presses

the Back button.

 When an activity is started, the onStart() and onResume() events are always called,

regardless of whether the activity is restored from the background or newly created.

3.3.2.Linking activities using intents

 An Android application can contain zero or more activities. When your application

has more than one activity, you may need to navigate from one activity to another.

 In Android, you navigate between activities through what is known as an intent .

52

Example:

1 . Using the Activities project created earlier, add the following statements

AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>

<manifestxmlns:android=”http://schemas.android.com/apk/res/android”

package=”net.learn2develop.Activities”

android:versionCode=”1”

android:versionName=”1.0”>

<applicationandroid:icon=”@drawable/icon”

android:label=”@string/app_name” >

 <activityandroid:name=”.MainActivity”

android:label=”@string/app_name”

 android:theme=”@android:style/Theme.Dialog” >

<intent-filter>

<actionandroid:name=”android.intent.action.MAIN” />

<categoryandroid:name=”android.intent.category.LAUNCHER”/>

</intent-filter>

 </activity>

 <activity android:name=”.Activity2”

 android:label=”Activity 2”>

<intent-filter>

<action android:name=”net.learn2develop.ACTIVITY2” />

<category android:name=”android.intent.category.DEFAULT” />

</intent-filter>

 </activity>

</application>

<uses-sdkandroid:minSdkVersion= ”9” />

2 . Right click on the package name under the src folder and select New ➪ Class.

 Name the new class file Activity2 and click Finish.

3. Make a copy of the main.xml file by right-clicking on it and selecting Copy. Then,

 right-click on the res/layout folder and select Paste. Name the file activity2.xml .

4. The res/layout folder will now contain the activity2.xml file

53

5 . Modify the activity2.xml file as follows:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”This is Activity 2!”

/>

</LinearLayout>

 6 . In the Activity2.java file, add the following statements

packagenet.learn2develop.Activities;

import android.app.Activity;

import android.os.Bundle;

public class Activity2 extends Activity {

@Override

54

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity2);

}

}

7 . Modify the MainActivity.java file as shown

packagenet.learn2develop.Activities;

importandroid.app.Activity;

importandroid.os.Bundle;

importandroid.util.Log;

importandroid.view.Window;

importandroid.view.KeyEvent;

importandroid.content.Intent;

publicclassMainActivityextendsActivity {

Stringtag =“Events” ;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 //---hidesthe titlebar---

 //requestWindowFeature(Window.FEATURE_NO_TITLE);

 setContentView(R.layout.main);

 Log.d(tag ,“In the onCreate()event”);

}

public boolean onKeyDown(int keyCode, KeyEvent event)

{

 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)

 {

startActivity(new Intent(“net.learn2develop.ACTIVITY2”));

 }

 return false;

}

publicvoidonStart(){//...}

55

publicvoidonRestart(){//...}

publicvoidonResume(){//...}

publicvoidonPause(){//...}

publicvoidonStop() {//...}

publicvoidonDestroy(){//...}

}

 8 . Press F11 to debug the application on the Android Emulator. When the first activity is

loaded, click the center of the directional pad .The second activity will now be loaded.

Working Principle:

 An activity is made up of a UI component (for example, main.xml) and a class

component (for example, MainActivity.java). Hence, if you want to add another

activity to a project, you need to create these two components.

 In the AndroidManifest.xml file, specifically you have added the following:

 <activityandroid:name= ”.Activity2”

 android:label=”Activity2”>

<intent-filter>

<actionandroid:name= ”net.learn2develop.ACTIVITY2”/>

<categoryandroid:name= ”android.intent.category.DEFAULT” />

</intent-filter>

 </activity>

Here, you have added a new activity to the application. Note the following:

 The name of the new activity added is ―Activity2‖.

 The label for the activity is named ―Activity 2‖.

56

 The intent filter name for the activity is ― ➤➤ net.learn2develop.ACTIVITY2‖.

Other activities that wish to call this activity will invoke it via this name. Ideally, you

should use the reverse domain name of your company as the intent filter name in

order to reduce the chances of another application having the same intent filter. The

next section discusses what happens when two or more activities have the same intent

filter.

 The category for the intent filter is ―android.intent.category.DEFAULT‖. You need to

add this to the intent filter so that this activity can be started by another activity using

the startActivity()

 In the MainActivity.java file, you implemented the onKeyDown event handler. This

event is fired whenever the user presses one of the keys on the device. When the user

presses the center key on the directional pad (as represented by the

KeyEvent.KEYCODE_DPAD_CENTER constant), you use the startActivity()

method to display Activity2 by creating an instance of the Intent class and passing it

the intent filter name of Activity2 (which is net.learn2develop.ACTIVITY2):

publicbooleanonKeyDown(int keyCode, KeyEvent event)

{

 if(keyCode ==KeyEvent.KEYCODE_DPAD_CENTER)

 {

startActivity(new Intent(“net.learn2develop.ACTIVITY2”));

 }

 returnfalse;

}

 Activities in Android can be invoked by any application running on the device.

 If the activity that you want to invoke is defined within the same project, you can

rewrite the preceding statement like this:

startActivity(new Intent(this,Activity2.class));

 However, this approach is applicable only when the activity you want to display is

within the same project as the current activity.

57

3.3.4.Calling Built- in applications using intents

 One of the key aspects of Android programming is using the intent to call activities

from other applications.

 In particular, your application can call the many built-in applications that are included

with an Android device.

 For example, if your application needs to enable a user to call a particular person

saved in the Contacts application, you can simply use an Intent object to bring up the

Contacts application, from which the user can select the person to call.

 This enables your application to present a consistent user experience, and enables you

to avoid building another application to retrieve all the contacts in the Contacts

application.

 The following Try It Out demonstrates how to call some of the built-in applications

commonly found on an Android device.

Example:

1. Using Eclipse, create a new Android project and name it Intents .

2. Add the following statements to the main.xml file:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<Button

android:id=”@+id/btn_webbrowser”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Web Browser” />

<Button

android:id=”@+id/btn_makecalls”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Make Calls” />

<Button

58

android:id=”@+id/btn_showMap”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Show Map” />

<Button

android:id=”@+id/btn_chooseContact”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Choose Contact” />

</LinearLayout>

3.Add the following statements to the MainActivity.java file:

packagenet.learn2develop.Intents;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.content.Intent;

import android.net.Uri;

import android.provider.ContactsContract;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.Toast;

publicclassMainActivityextendsActivity {

Button b1, b2, b3, b4;

int request_Code = 1;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 //---Web browser button---

 b1 = (Button) findViewById(R.id.btn_webbrowser);

 b1.setOnClickListener(new OnClickListener()

 {

59

public void onClick(View arg0){

Intent i = new

Intent(android.content.Intent.ACTION_VIEW,

 Uri.parse(“http://www.amazon.com”));

startActivity(i);

}

 });

 //---Make calls button---

 b2 = (Button) findViewById(R.id.btn_makecalls);

 b2.setOnClickListener(new OnClickListener()

 {

public void onClick(View arg0){

Intent i = new

Intent(android.content.Intent.ACTION_DIAL,

 Uri.parse(“tel:+651234567”));

startActivity(i);

}

 });

 //---Show Map button---

 b3 = (Button) findViewById(R.id.btn_showMap);

 b3.setOnClickListener(new OnClickListener()

 {

public void onClick(View arg0){

Intent i = new

Intent(android.content.Intent.ACTION_VIEW,

 Uri.parse(“geo:37.827500,-122.481670”));

startActivity(i);

}

 });

 //---Choose Contact button---

 b4 = (Button) findViewById(R.id.btn_chooseContact);

 b4.setOnClickListener(new OnClickListener()

 {

60

public void onClick(View arg0){

Intent i = new

Intent(android.content.Intent.ACTION_PICK);

i.setType(ContactsContract.Contacts.CONTENT_TYPE);

startActivityForResult(i,request_Code);

}

 });

}

public void onActivityResult(int requestCode, int resultCode, Intent data)

{

 if (requestCode == request_Code)

 {

 if (resultCode == RESULT_OK)

 {

 Toast.makeText (this,data.getData().toString(),

 Toast.LENGTH_SHORT).show();

 Intent i = new Intent(

 android.content.Intent.ACTION_VIEW,

 Uri.parse(data.getData().toString()));

 startActivity(i);

 }

 }

}

}

4 . Press F11 to debug the application on the Android Emulator.

5 . Click the Web Browser button to load the Browser application on the emulator .

61

6 . Click the Make Calls button and the Phone application will load

7 . Similarly, to load the Maps application, click the Show Map button.

8 . Click the Choose Contact application to show a list of contacts that you can select

Selecting a contact will show details about that contact.

62

3.3.4.Fragments:

A Fragment is a piece of an application's user interface or behavior that can be placed in an

Activity which enable more modular activity design. It will not be wrong if we say, a

fragment is a kind of sub-activity. Following are the important points about fragment:

 A fragment has its own layout and its own behavior with its own lifecycle callbacks.

 You can add or remove fragments in an activity while the activity is running.

 You can combine multiple fragments in a single activity to build a multipane UI.

 A fragment can be used in multiple activities.

 Fragment life cycle is closely related to the lifecycle of its host activity which means

when the activity is paused, all the fragments available in the activity will also be

stopped.

 A fragment can implement a behavior that has no user interface component.

Fragment Life Cycle

Android fragments have their own life cycle very similar to an android activity.

This section briefs different stages of its life cycle.

63

Example:

Following is the content of the modified main activity file

package com.example.myfragments;

import android.os.Bundle;

import android.app.Activity;

import android.app.FragmentManager;

import android.app.FragmentTransaction;

import android.content.res.Configuration;

import android.view.WindowManager;

64

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Configuration config = getResources().getConfiguration();

FragmentManager fragmentManager = getFragmentManager();

FragmentTransaction fragmentTransaction =

fragmentManager.beginTransaction();

/**

* Check the device orientation and act accordingly

*/

if (config.orientation == Configuration.ORIENTATION_LANDSCAPE) {

/**

* Landscape mode of the device

*/

LM_Fragment ls_fragment = new LM_Fragment();

fragmentTransaction.replace(android.R.id.content, ls_fragment);

}else{

/**

* Portrait mode of the device

*/

PM_Fragment pm_fragment = new PM_Fragment();

fragmentTransaction.replace(android.R.id.content, pm_fragment);

}

fragmentTransaction.commit();

}

}

Create two fragment files LM_Fragement.java and PM_Fragment.java under

com.example.mycontentprovider package.

Following is the content of LM_Fragement.java file:

package com.example.myfragments;

import android.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

65

import android.view.View;

import android.view.ViewGroup;

public class LM_Fragment extends Fragment{

@Override

public View onCreateView(LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState) {

/**

* Inflate the layout for this fragment

*/

return inflater.inflate(

R.layout.lm_fragment, container, false);

}

}

Following is the content of PM_Fragement.java file:

package com.example.myfragments;

import android.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class PM_Fragment extends Fragment{

@Override

public View onCreateView(LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState) {

/**

* Inflate the layout for this fragment

*/

return inflater.inflate(

R.layout.pm_fragment, container, false);

}

}

Create two layout

files: lm_fragement.xml and pm_fragment.xml under res/layoutdirectory.

Following is the content of lm_fragement.xml file:

66

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="#7bae16">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/landscape_message"

android:textColor="#000000"

android:textSize="20px" />

<!-- More GUI components go here -->

</LinearLayout>

Following is the content of pm_fragment.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="#666666">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/portrait_message"

android:textColor="#000000"

android:textSize="20px" />

<!-- More GUI components go here -->

</LinearLayout>

Following will be the content of res/layout/activity_main.xml file which

includes your fragments:

<?xml version="1.0" encoding="utf-8"?>

67

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="horizontal">

<fragment

android:name="com.example.fragments"

android:id="@+id/lm_fragment"

android:layout_weight="1"

android:layout_width="0dp"

android:layout_height="match_parent" />

<fragment

android:name="com.example.fragments"

android:id="@+id/pm_fragment"

android:layout_weight="2"

android:layout_width="0dp"

android:layout_height="match_parent" />

</LinearLayout>

Make sure you have following content of res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">MyFragments</string>

<string name="action_settings">Settings</string>

<string name="hello_world">Hello world!</string>

<string name="landscape_message">This is Landscape mode fragment

</string>

<string name="portrait_message">This is Portrait mode fragment

</string>

</resources>

68

3.3.5. Displaying notifications

 Toast class is a handy way to show users alerts, it is not persistent. It flashes on the

screen for a few seconds and then disappears.

 If it contains important information, users may easily miss it if they are not looking at

the screen.

 For messages that are important, you should use a more persistent method. In this

case, you should use the NotificationManager to display a persistent message at the

top of the device, commonly known as the status bar (sometimes also referred to as

the notification bar).

Example:

1 . Using Eclipse, create a new Android project and name it Notifications .

 2 . Add a new class file named NotificationView.java to the src folder of the project

In addition, add a new notification.xml file to the res/layout folder as well.

3 . Populate the notification.xml file as follows:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<TextView

69

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Here are the details for the notification...” />

</LinearLayout>

4 . Populate the NotificationView.java file as follows:

packagenet.learn2develop.Notifications;

import android.app.Activity;

import android.app.NotificationManager;

import android.os.Bundle;

public class NotificationView extends Activity

{

@Override

public void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.notification);

 //---look up the notification manager service---

 NotificationManager nm = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

 //---cancel the notification that we started

 nm.cancel(getIntent().getExtras().getInt(“notificationID”));

}

}

5 . Add the following statements to the AndroidManifest.xml file:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<manifestxmlns:android=”http://schemas.android.com/apk/res/android”

package= ”net.learn2develop.Notifications”

android:versionCode=”1”

android:versionName=”1.0”>

<applicationandroid:icon= ”@drawable/icon”

android:label=”@string/app_name” >

 <activityandroid:name= ”.MainActivity”

70

 android:label=”@string/app_name” >

<intent-filter>

<actionandroid:name= ”android.intent.action.MAIN” />

<categoryandroid:name= ”android.intent.category.LAUNCHER”/>

</intent-filter>

 </activity>

 <activity android:name=”.NotificationView”

android:label=”Details of notification”>

<intent-filter>

<action android:name=”android.intent.action.MAIN” />

<category android:name=”android.intent.category.DEFAULT” />

</intent-filter>

 </activity>

</application>

<uses-sdkandroid:minSdkVersion=”9” />

<uses-permissionandroid:name= ”android.permission.VIBRATE” />

</manifest>

 6 . Add the following statements to the main.xml file:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<Button

android:id=”@+id/btn_displaynotif”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Display Notification” />

</LinearLayout>

 7 . Finally, add the following statements to the MainActivity.java file:

packagenet.learn2develop.Notifications;

importandroid.app.Activity;

71

importandroid.os.Bundle;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.content.Intent;

import android.view.View;

import android.widget.Button;

publicclassMainActivityextendsActivity {

int notificationID = 1;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Button button = (Button) findViewById(R.id. btn_displaynotif);

 button.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v) {

displayNotification();

}

 });

}

protected void displayNotification()

{

 //---PendingIntent to launch activity if the user selects

 // this notification---

 Intent i = new Intent(this, NotificationView.class);

 i.putExtra(“notificationID”, notificationID);

 PendingIntent pendingIntent =

PendingIntent.getActivity(this, 0, i, 0);

 NotificationManager nm = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

 Notification notif = new Notification(

72

R.drawable.icon,

“Reminder: Meeting starts in 5 minutes”,

System.currentTimeMillis());

 CharSequence from = “System Alarm”;

 CharSequence message = “Meeting with customer at 3pm...” ;

 notif.setLatestEventInfo(this, from, message, pendingIntent);

 //---100ms delay, vibrate for 250ms, pause for 100 ms and

 // then vibrate for 500ms---

 notif.vibrate = new long[] { 100, 250, 100, 500};

 nm.notify(notificationID, notif);

}

}

 8 . Press F11 to debug the application on the Android Emulator.

 9 . Click the Display Notification button (and a notification will appear on the status bar.

 10 . Clicking and dragging the status bar down will reveal the notification

 11 . Clicking on the notification will reveal the Notification View activity. This also

causes the notification to be dismissed from the status bar.

73

Working Principle:

 To display a notification, you first created an Intent object to point to the

NotificationView class:

 //---PendingIntent tolaunchactivity ifthe userselects

 //thisnotification---

 Intenti=new Intent(this,NotificationView.class);

 i.putExtra(“notificationID”,notificationID);

 This intent will be used to launch another activity when the user selects a notification

from the list of noti-fications. In this example, you added a key/value pair to the

Intent object so that you can tag the notification ID, identifying the notification to the

target activity.

 The getActivity() method retrieves a PendingIntent object and you set it using the

following arguments:

1. context — Application context

2. request code — Request code for the intent

3. intent — The intent for launching the target activity

4. flags — The flags in which the activity is to be launched

 You then obtain an instance of the NotificationManager class and create an instance

of the Notification class:

 NotificationManager nm = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

 Notification notif = new Notification(

R.drawable.icon,

“Reminder: Meeting starts in 5 minutes”,

System.currentTimeMillis());

 The Notification class enables you to specify the notification’s main information

when the notification first appears on the status bar. The second argument to the

Notification constructor sets the ―ticker text‖ on the status bar

 Next, you set the details of the notification using the setLatestEventInfo() method:

 CharSequence from = “System Alarm”;

 CharSequence message = “Meeting with customer at 3pm...” ;

 notif.setLatestEventInfo(this, from, message, pendingIntent);

 //---100ms delay, vibrate for 250ms, pause for 100 ms and

74

 // then vibrate for 500ms---

 notif.vibrate = new long[] { 100, 250, 100, 500};

 The preceding also sets the notification to vibrate the phone. Finally, to display the

notification you use the notify() method:

 nm.notify(notificationID, notif);

 When the user clicks on the notification, the NotificationView activity is launched.

Here, you dismiss the notification by using the cancel() method of the

NotificationManager object and passing it the ID of the notification (passed in via the

Intent object):

 //---look up the notification manager service---

 NotificationManager nm = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

 //---cancel the notification that we started

 nm.cancel(getIntent().getExtras().getInt(“notificationID”));

3.4.USER INTERFACE

3.4.1.Views and viewgroups

 A view is a widget that has an appearance on screen.

 Examples of views are buttons, labels, and text boxes. A view derives from the base

class android.view.View.

 One or more views can be grouped together into a ViewGroup. A ViewGroup (which

is itself a spe-cial type of view) provides the layout in which you can order the

appearance and sequence of views.

 Examples of ViewGroups include LinearLayout and FrameLayout. A ViewGroup

derives from the base class android.view.ViewGroup.

 Android supports the following ViewGroups:

1. LinearLayout

2. AbsoluteLayout

3. TableLayout

4. RelativeLayout

5. FrameLayout

6. ScrollView

75

3.4.2.Layouts:

Linear layout

 The LinearLayout arranges views in a single column or a single row. Child views can

be arranged either vertically or horizontally.

 To see how LinearLayout works, consider the following elements typically contained

in the main.xml file:

<?xmlversion=”1.0”encoding =”utf-8”?>

<LinearLayout

xmlns:android =”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello”

/>

</LinearLayout>

 In the main.xml file, observe that the root element is <LinearLayout> and it has a

<TextView> ele ment contained within it. The <LinearLayout> element controls the

order in which the views con-tained within it appear.

 Each View and ViewGroup has a set of common attributes

Attribute description

layout_width : Specifies the width of the View or ViewGroup

layout_height : Specifies the height of the View or ViewGroup

layout_margin : Top Specifies extra space on the top side of the View or

ViewGroup

layout_margin : Bottom Specifies extra space on the bottom side of the View or

ViewGroup

layout_margin : Left Specifies extra space on the left side of the View or

ViewGroup

76

layout_margin : Right Specifies extra space on the right side of the View or

ViewGroup

 This will set the width of the view to be equal to the width of the text contained within

it. Consider the following layout:

<?xmlversion=”1.0”encoding=”utf-8”?>

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<TextView

android:layout_width=”105dp”

android:layout_height=”wrap_content”

android:text=”@string/hello”

/>

<Button

android:layout_width=”160dp”

android:layout_height=”wrap_content”

android:text=”Button”

/>

</LinearLayout>

77

 The preceding example also specifies that the orientation of the layout is vertical:

<LinearLayout

xmlns:android =”http://schemas.android.com/apk/res/android”

 android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

 The default orientation layout is horizontal, so if you omit the android:orientation

attribute,the views will appear as shown in

 In LinearLayout, you can apply the layout_weight and layout_gravity attributes to

views contained within it, as the following modifications to main.xml show:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<TextView

android:layout_width=”105dp”

android:layout_height=”wrap_content”

android:text= ”@string/hello”

/>

78

<Button

android:layout_width=”160dp”

android:layout_height=”wrap_content”

android:text= ”Button”

 android:layout_gravity= ”right”

 android:layout_weight=”0.2”

 />

<EditText

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:textSize=”18sp”

 android:layout_weight=”0.8”

 />

</LinearLayout>

Absolute layout

The AbsoluteLayout enables you to specify the exact location of its children. Consider the

following UI defined in main.xml :

<?xmlversion=”1.0”encoding =”utf-8”?>

<AbsoluteLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android =http://schemas.android.com/apk/res/android

>

http://schemas.android.com/apk/res/android

79

<Button

android:layout_width=”188dp”

android:layout_height=”wrap_content”

android:text=”Button”

android:layout_x=”126px”

android:layout_y=”361px”

/>

<Button

android:layout_width=”113dp”

android:layout_height=”wrap_content”

android:text=”Button”

android:layout_x=”12px”

android:layout_y=”361px”

/>

</AbsoluteLayout>

Table layout

 The TableLayout groups views into rows and columns. You use the <TableRow>

element to designate a row in the table. Each row can contain one or more views.

 Each view you place within a row forms a cell. The width of each column is

determined by the largest width of each cell in that column.Consider the content of

main.xml shown here:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<TableLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

80

android:layout_height=”fill_parent”

android:layout_width=”fill_parent”

>

<TableRow>

 <TextView

android:text= ”UserName:”

android:width =”120px”

/>

 <EditText

android:id=”@+id/txtUserName”

android:width=”200px”/>

</TableRow>

<TableRow>

 <TextView

android:text= ”Password:”

/>

 <EditText

android:id=”@+id/txtPassword”

android:password=”true”

/>

</TableRow>

<TableRow>

 <TextView/>

 <CheckBoxandroid:id=”@+id/chkRememberPassword”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”RememberPassword”

/>

</TableRow>

<TableRow>

 <Button

android:id=”@+id/buttonSignIn”

android:text= ”LogIn” />

81

</TableRow>

</TableLayout>

Relative layout

The RelativeLayout enables you to specify how child views are positioned relative to each

other. Consider the following main.xml file:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<RelativeLayout

android:id=”@+id/RLayout”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<TextView

 android:id=”@+id/lblComments”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”Comments”

 android:layout_alignParentTop= ”true”

 android:layout_alignParentLeft=”true”

 />

<EditText

 android:id=”@+id/txtComments”

 android:layout_width=”fill_parent”

 android:layout_height=”170px”

 android:textSize=”18sp”

82

 android:layout_alignLeft= ”@+id/lblComments”

 android:layout_below=”@+id/lblComments”

 android:layout_centerHorizontal=”true”

 />

<Button

 android:id=”@+id/btnSave”

 android:layout_width=”125px”

 android:layout_height=”wrap_content”

 android:text= ”Save”

 android:layout_below=”@+id/txtComments”

 android:layout_alignRight=”@+id/txtComments”

 />

<Button

 android:id=”@+id/btnCancel”

 android:layout_width=”124px”

 android:layout_height=”wrap_content”

 android:text= ”Cancel”

 android:layout_below=”@+id/txtComments”

 android:layout_alignLeft= ”@+id/txtComments”

 />

</RelativeLayout>

Notice that each view embedded within the RelativeLayout has attributes that enable it to

align with another view. These attributes are as follows:

layout_align: ParentTop

layout_align: ParentLeft

layout_align: Left

layout_align: Right

layout_center: Horizontal

The value for each of these attributes is the ID for the view that you are referencing. The

preceding XML UI creates the screen shown below

83

Frame layout

The FrameLayout is a placeholder on screen that you can use to display a single view. Views

that you add to a FrameLayout are always anchored to the top left of the layout. Consider the

following content in main.xml :

<?xmlversion=”1.0”encoding=”utf-8”?>

<RelativeLayout

android:id=”@+id/RLayout”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android= ”http://schemas.android.com/apk/res/android”

>

<TextView

android:id=”@+id/lblComments”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:text=”Thisismylovelydog,Ookii”

android:layout_alignParentTop= ”true”

android:layout_alignParentLeft=”true”

 />

<FrameLayout

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_alignLeft= ”@+id/lblComments”

android:layout_below=”@+id/lblComments”

android:layout_centerHorizontal=”true”

84

 >

 <ImageView

android:src=“@drawable/ookii”

android:layout_width= ”wrap_content”

android:layout_height=”wrap_content”

/>

</FrameLayout>

</RelativeLayout>

Here, you have a FrameLayout within a RelativeLayout. Within the FrameLayout, you

embed an ImageView.

<?xmlversion=”1.0”encoding=”utf-8”?>

<RelativeLayout

android:id=”@+id/RLayout”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<TextView

 android:id=”@+id/lblComments”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”Thisismylovelydog,Ookii”

 android:layout_alignParentTop=”true”

 android:layout_alignParentLeft=”true”

 />

<FrameLayout

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_alignLeft=”@+id/lblComments”

 android:layout_below=”@+id/lblComments”

 android:layout_centerHorizontal=”true”

 >

85

 <ImageView

android:src=“@drawable/ookii”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

/>

 <Button

 android:layout_width= ”124dp”

 android:layout_height=”wrap_content”

 android:text=”Print Picture”

 />

</FrameLayout>

</RelativeLayout>

Scroll view

A ScrollView is a special type of FrameLayout in that it enables users to scroll through a

list of views that occupy more space than the physical display. The ScrollView can contain

only one child view or ViewGroup, which normally is a LinearLayout.

The following main.xml content shows a ScrollView containing a LinearLayout, which in

turn contains some Button and EditText views:

<?xmlversion=”1.0”encoding=”utf-8”?>

<ScrollView

android:layout_width=”fill_parent”

86

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<LinearLayout

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:orientation=”vertical”

 >

 <Button

android:id=”@+id/button1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Button1”

/>

 <Button

android:id=”@+id/button2”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Button2”

/>

 <Button

android:id=”@+id/button3”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Button3”

/>

 <EditText

android:id=”@+id/txt”

android:layout_width=”fill_parent”

android:layout_height=”300px”

/>

 <Button

android:id=”@+id/button4”

87

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Button4”

/>

 <Button

android:id=”@+id/button5”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Button5”

/>

</LinearLayout>

</ScrollView>

3.4.3.Display orientation

 One of the key features of modern smartphones is their ability to switch screen

orientation, and Android is no exception. Android supports two screen orientations:

portrait and landscape .

 By default, when you change the display orientation of your Android device, the

current activity that is displayed will automatically redraw its content in the new

orientation. This is because the onCreate() event of the activity is fi red whenever

there is a change in display orientation.

88

In general, you can employ two techniques to handle changes in screen orientation:

Anchoring — The easiest way is to ―anchor‖ your views to the four edges of the screen.

When the screen orientation changes, the views can anchor neatly to the edges.

Resizing and repositioning — Whereas anchoring and centralizing are simple techniques to

ensure that views can handle changes in screen orientation, the ultimate technique is resizing

each and every view according to the current screen orientation.

Anchoring v iews

Anchoring could be easily achieved by using RelativeLayout. Consider the following

main.xml containing five Button views embedded within the <RelativeLayout> element:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<RelativeLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<Button

 android:id=”@+id/button1”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”TopLeftButton”

 android:layout_alignParentLeft=”true”

 android:layout_alignParentTop= ”true”

 />

<Button

 android:id=”@+id/button2”

89

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”TopRightButton”

 android:layout_alignParentTop= ”true”

 android:layout_alignParentRight=”true”

 />

<Button

 android:id=”@+id/button3”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”BottomLeftButton”

 android:layout_alignParentLeft=”true”

 android:layout_alignParentBottom=”true”

 />

<Button

 android:id=”@+id/button4”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”BottomRightButton”

 android:layout_alignParentRight=”true”

 android:layout_alignParentBottom=”true”

 />

<Button

 android:id=”@+id/button5”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text= ”MiddleButton”

 android:layout_centerVertical= ”true”

 android:layout_centerHorizontal=”true”

 />

</RelativeLayout>

Observe the following attributes found in the various Button views:

90

 layout_alignParentLeft — Aligns the view to the left of the parent

view

 layout_alignParentRight — Aligns the view to the right of the parent

view

 layout_alignParentTop — Aligns the view to the top of the parent

view

 layout_alignParentBottom — Aligns the view to the bottom of the

parent view

 layout_centerVertical — Centers the view vertically within its parent

view

 layout_centerHorizontal — Centers the view horizontally within its

parent view

91

Resizing and repositioning

 Apart from anchoring your views to the four edges of the screen, an easier way to

customize the UI based on screen orientation is to create a separate res/layout

folder containing the XML files for the UI of each orientation.

 To support landscape mode, you can create a new folder in the res folder and name it

as layout-land (representing landscape).

The following shows the content of main.xml under the layout folder:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<RelativeLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<Button

 android:id=”@+id/button1”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”TopLeftButton”

 android:layout_alignParentLeft=”true”

 android:layout_alignParentTop=”true”

 />

<Button

 android:id=”@+id/button2”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”TopRightButton”

 android:layout_alignParentTop=”true”

 android:layout_alignParentRight=”true”

 />

<Button

 android:id=”@+id/button3”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

92

 android:text= ”BottomLeftButton”

 android:layout_alignParentLeft=”true”

 android:layout_alignParentBottom= ”true”

 />

<Button

 android:id=”@+id/button4”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”BottomRightButton”

 android:layout_alignParentRight=”true”

 android:layout_alignParentBottom= ”true”

 />

<Button

 android:id=”@+id/button5”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text= ”MiddleButton”

 android:layout_centerVertical=”true”

 android:layout_centerHorizontal=”true”

 />

</RelativeLayout>

The following shows the content of main.xml under the layout-land folder are the additional

views to display in landscape mode):

<?xmlversion= ”1.0”encoding=”utf-8”?>

<RelativeLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<Button

 android:id=”@+id/button1”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

93

 android:text= ”TopLeftButton”

 android:layout_alignParentLeft=”true”

 android:layout_alignParentTop=”true”

 />

<Button

 android:id=”@+id/button2”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”TopRightButton”

 android:layout_alignParentTop=”true”

 android:layout_alignParentRight=”true”

 />

<Button

 android:id=”@+id/button3”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”BottomLeftButton”

 android:layout_alignParentLeft=”true”

 android:layout_alignParentBottom= ”true”

 />

<Button

 android:id=”@+id/button4”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”BottomRightButton”

 android:layout_alignParentRight=”true”

 android:layout_alignParentBottom= ”true”

 />

<Button

 android:id=”@+id/button5”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text= ”MiddleButton”

94

 android:layout_centerVertical=”true”

 android:layout_centerHorizontal=”true”

 />

<Button

 android:id=”@+id/button6”

 android:layout_width=”180px”

 android:layout_height=”wrap_content”

 android:text=”Top Middle Button”

 android:layout_centerVertical= ”true”

 android:layout_centerHorizontal=”true”

 android:layout_alignParentTop= ”true”

 />

 <Button

 android:id=”@+id/button7”

 android:layout_width=”180px”

 android:layout_height=”wrap_content”

 android:text=”Bottom Middle Button”

 android:layout_centerVertical= ”true”

 android:layout_centerHorizontal=”true”

 android:layout_alignParentBottom=”true”

 />

</RelativeLayout>

95

3.4.4`Action Bar

The action bar is a dedicated bar at the top of each screen that is generally persistent

througout the app. It provides you several key function which are as following:

 Makes important actions prominent and accessible

 Supports consistent navigation and view switching within apps

 Reduces clutter by providing an action overflow for rarely used actions

 Provides a dedicated space for giving your app an identity

Action Bar Components

Action Bar has four major components which can be seen in the following image.

3.4.5.Listening for UI notifications

Users interact with your UI at two levels: the activity level and the views level. At the activity

level, the Activity class exposes methods that you can override. Some common methods that

you can override in your activities include the following:

 onKeyDown — Called when a key was pressed and not handled by any of the views

contained within the activity

 onKeyUp — Called when a key was released and not handled by any of the views

contained within the activity

96

 onMenuItemSelected — Called when a panel’s menu item has been selected by the

user

 onMenuOpened — Called when a panel’s menu is opened by the user overriding

methods defined in an Activity

Example:

 1 . Using Eclipse, create a new Android project and name it UIActivity.

 2 . Add the following statements :

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

android:orientation=”vertical”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

 <TextView

 android:layout_width=”214dp”

 android:layout_height=”wrap_content”

 android:text=”Your Name”

 />

 <EditText

 android:id=”@+id/txt1”

 android:layout_width=”214dp”

 android:layout_height=”wrap_content”

 />

 <Button

 android:id=”@+id/btn1”

 android:layout_width=”106dp”

 android:layout_height=”wrap_content”

 android:text=”OK”

 />

 <Button

 android:id=”@+id/btn2”

 android:layout_width=”106dp”

97

 android:layout_height=”wrap_content”

 android:text=”Cancel”

 />

</LinearLayout>

 3 . Add the following statements to the MainActivity.java file:

packagenet.learn2develop.UIActivity;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.view.KeyEvent;

import android.widget.Toast;

publicclassMainActivityextendsActivity {

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

}

@Override

 public boolean onKeyDown(int keyCode, KeyEvent event)

 {

 switch (keyCode)

 {

 case KeyEvent.KEYCODE_DPAD_CENTER:

 Toast.makeText (getBaseContext(),

 “Center was clicked”,

 Toast.LENGTH_LONG).show();

 break;

 case KeyEvent.KEYCODE_DPAD_LEFT:

 Toast.makeText (getBaseContext(),

 “Left arrow was clicked”,

 Toast.LENGTH_LONG).show();

 break;

 case KeyEvent.KEYCODE_DPAD_RIGHT :

98

 Toast.makeText (getBaseContext(),

 “Right arrow was clicked”,

 Toast.LENGTH_LONG).show();

 break;

 case KeyEvent.KEYCODE_DPAD_UP:

 Toast.makeText (getBaseContext(),

 “Up arrow was clicked”,

 Toast.LENGTH_LONG).show();

 break;

 case KeyEvent.KEYCODE_DPAD_DOWN:

 Toast.makeText (getBaseContext(),

 “Down arrow was clicked”,

 Toast.LENGTH_LONG).show();

 break;

 }

 return false;

 }

}

4 . Press F11 to debug the application on the Android Emulator.

5 . When the activity is loaded, type some text into it. Next, click the down arrow key on the

directional pad. Observe the message shown on the screen

99

Registering events for views

 Views can fire events when users interact with them. For example, when a user

touches a Button view, you need to service the event so that the appropriate action

can be performed.

 Using the same example discussed in the previous section, recall that the activity has

two Button views; therefore, you can register the button click events using an

anonymous class as shown here:

packagenet.learn2develop.UIActivity;

importandroid.app.Activity;

importandroid.os.Bundle;

importandroid.view.KeyEvent;

importandroid.view.View;

importandroid.widget.Toast;

import android.view.View.OnClickListener;

import android.widget.Button;

publicclassMainActivityextendsActivity {

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 //---the two buttons are wired to the same event handler---

 Button btn1 = (Button)findViewById(R.id. btn1);

 btn1.setOnClickListener(btnListener);

 Button btn2 = (Button)findViewById(R.id. btn2);

 btn2.setOnClickListener(btnListener);

 }

 //---create an anonymous class to act as a button click listene r---

 private OnClickListener btnListener = new OnClickListener()

 {

 public void onClick(View v)

 {

 Toast. makeText (getBaseContext(),

100

 ((Button) v).getText() + “ was clicked”,

 Toast.LENGTH_LONG).show();

 }

 };

@Override

publicbooleanonKeyDown(int keyCode, KeyEvent event)

{

 switch(keyCode)

 {

//...

//...

 }

 returnfalse;

}

}

If you now press either the OK button or the Cancel button, the appropriate message will be

displayed .proving that the event is wired up properly.

Besides defining an anonymous class for the event handler, you can also define an

anonymous inner class to handle an event. The following example shows how you can handle

the onFocusChange()

event for the EditText view:

importandroid.widget.EditText;

publicclassMainActivityextendsActivity {

/** Calledwhenthe activity isfirstcreated. */

101

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 //---the two buttonsare wiredtothe sameeventhandler---

 Buttonbtn1=(Button)findViewById(R.id.btn1);

 btn1.setOnClickListener(btnListener);

 Buttonbtn2=(Button)findViewById(R.id.btn2);

 btn2.setOnClickListener(btnListener);

 EditText txt1 = (EditText)findViewById(R.id.txt1);

 //---create an anonymous inner class to act as an onfocus liste ner---

 txt1.setOnFocusChangeListener(new View.OnFocusChangeListener()

 {

 @Override

 public void onFocusChange(View v, boolean hasFocus) {

 Toast.makeText (getBaseContext(),

 ((EditText) v).getId() + “ has focus - “ + hasFocus,

 Toast.LENGTH_LONG).show();

 }

 });

}

102

Review Questions

PART-A(2 Mark Questions)

1. What is an Android?

2. Mention any 4 android versions.

3. List any 4 features of Android.

4. What is Dalvik Virtual Machine?

5. What is ADT?

6. What is AVD?

7. What is an activity?

8. What is an Intent?

9. What do you mean by linking activities?

10. What do you mean by fragment?

11. Define view.

12. Define Viewgroup.

13. What is a layout?

14. What are the orientations provided by the activity?

15. Define notification.

16. What do you mean by an Actionbar?

PART-B(3 Mark Questions)

1. Explain any 3 features of Android.

2. Briefly explain Android SDK.

3. How will you create AVD?

4. What are the types of intent? Briefly explain them.

5. Draw flowchart for Android fragment lifestyle.

6. What are the types of fragments? Explain.

7. Explain view.

8. Explain view group.

9. List any three layout attributes and explain them.

10. Briefly explain Action bar.

PART-C(5&10 Mark Questions))

1. Explain Architecture of Android?(10)

2. Explain Dalvik Virtual Machine(5)

3. Explain ADT(5)

103

4. With activity lifecycle flowchart ,explain activities in detail.(10)

5. Explain intents in detail.(10)

6. Explain various types of Layouts(5)

7. Explain display Orientation in detail(10)

8. Explain display notifications(5)

9. Explain listening for UI notifications(5)

104

UNIT-IV

VIEWS

OBJECTIVES

At the end of the unit, students can

 Explain Basic views in Android

 Explain Advanced views in Android

 Explain Displaying Pictures and menus with views

 Explain how to send SMS

 Explain how to make Phonecall

4.1 Basic views

Basic Views in Android applications:

 TextView

 EditText

 Button

 ImageButton

 CheckBox

 ToggleButton

 RadioButton

 RadioGroup

These basic views enable you to display text information, as well as perform some basic

selection.

4.1.1 Text view

When you create a new Android project, Eclipse always creates the main.xml fi le (located in

the res/layout folder), which contains a <TextView> element:

<?xmlversion=‖1.0‖encoding=‖utf-8‖?>

<LinearLayout xmlns:android=‖http://schemas.android.com/apk/res/android‖

android:orientation=‖vertical‖

android:layout_width=‖fill_parent‖

android:layout_height=‖fill_parent‖

>

<TextView

android:layout_width=‖fill_parent‖

105

android:layout_height=‖wrap_content‖

android:text= ‖@string/hello‖

/>

</LinearLayout>

The TextView view is used to display text to the user.

4.1.2 Button, imageButton, edittext, checkBox, toggleButton, radioButton,

and radiogroup views

Some Basic UI Controls are Button, ImageButton, EditText , CheckBox , ToggleButton,

RadioButton, and RadioGroup

 Button — Represents a push-button widget

 ImageButton — Similar to the Button view, except that it also displays an image

 EditText — A subclass of the TextView view, except that it allows users to edit its

text content

 CheckBox — A special type of button that has two states: checked or unchecked

 RadioGroup and RadioButton — The RadioButton has two states: either checked or

unchecked.

 Once a RadioButton is checked, it cannot be unchecked. A RadioGroup is used to

group together one or more RadioButton views, thereby allowing only one

RadioButton to be checked within the RadioGroup.

 ToggleButton — Displays checked/unchecked states using a light indicator

Example:

1 . Using Eclipse, create an Android project and name it

2 . Modify the main.xml fi le located in the res/layout folder by adding the following

elements

<?xmlversion=‖1.0‖encoding=‖utf-8‖?>

<LinearLayout xmlns:android=‖http://schemas.android.com/apk/res/android‖

android:orientation=‖vertical‖

android:layout_width=‖fill_parent‖

android:layout_height=‖fill_parent‖ >

<Button android:id=‖@+id/btnSave‖

 android:layout_width=‖fill_parent‖

 android:layout_height=‖wrap_content‖

 android:text= ‖Save‖ />

106

<Button android:id=‖@+id/btnOpen‖

 android:layout_width=‖wrap_content‖

 android:layout_height=‖wrap_content‖

 android:text= ‖Open‖ />

<ImageButton android:id=‖@+id/btnImg1‖

 android:layout_width=‖fill_parent‖

 android:layout_height=‖wrap_content‖

 android:src=‖@drawable/icon‖ />

<EditText android:id=‖@+id/txtName‖

 android:layout_width=‖fill_parent‖

 android:layout_height=‖wrap_content‖ />

<CheckBox android:id=‖@+id/chkAutosave‖

 android:layout_width=‖fill_parent‖

 android:layout_height=‖wrap_content‖

 android:text= ‖Autosave‖ />

<CheckBox android:id=‖@+id/star‖

 style=‖?android:attr/starStyle‖

 android:layout_width=‖wrap_content‖

 android:layout_height=‖wrap_content‖ />

<RadioGroup android:id=‖@+id/rdbGp1‖

 android:layout_width=‖fill_parent‖

 android:layout_height=‖wrap_content‖

 android:orientation=‖vertical‖ >

 <RadioButton android:id=‖@+id/rdb1‖

android:layout_width=‖fill_parent‖

android:layout_height=‖wrap_content‖

android:text= ‖Option 1‖ />

 <RadioButton android:id=‖@+id/rdb2‖

android:layout_width=‖fill_parent‖

android:layout_height=‖wrap_content‖

android:text= ‖Option 2‖ />

</RadioGroup>

<ToggleButton android:id=‖@+id/toggle1‖

 android:layout_width=‖wrap_content‖

107

 android:layout_height=‖wrap_content‖ />

</LinearLayout>

 3 . To see the views in action, debug the project in Eclipse by selecting the project name and

pressing F11

.

4 . Click on the various views and note how they vary in their look and feel.

 The first CheckBox view (Autosave) is checked.

 The second CheckBox View (star) is checked.

 The second RadioButton (Option 2) is selected.

 The ToggleButton is turned on.

108

Working Principle:

1.For the first Button, the layout_width attribute is set to fill_parent so that its width occupies

the entire width of the screen:

<Buttonandroid:id=”@+id/btnSave”

 android: layout_width= ”fill_parent”

 android:layout_height=”wrap_content”

 android:text= ”Save”/>

2.For the second Button, the layout_width attribute is set to wrap_content so that its width

will be the width of its content — specifically, the text that it is displaying (i.e.,―Open‖):

<Buttonandroid:id=”@+id/btnOpen”

 android: layout_width= ”wrap_content”

 android:layout_height=”wrap_content”

 android:text= ”Open”/>

3.The ImageButton displays a button with an image. The image is set through the src

attribute. In this case, you simply use the image used for the application icon:

<ImageButtonandroid:id=”@+id/btnImg1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android: src=”@drawable/icon”/>

4.The EditText view displays a rectangular region where the user can enter some text. You

set the layout_height to wrap_content so that if the user enters a long string of text, its height

will automatically be adjusted to fit the content

109

<EditTextandroid:id=”@+id/txtName”

 android:layout_width=”fill_parent”

 android: layout_height=”wrap_content”/>

5.The CheckBox displays a checkbox that users can tap to check or uncheck it:

<CheckBoxandroid:id=”@+id/chkAutosave”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text= ”Autosave”/>

6.If you do not like the default look of the CheckBox , you can apply a style attribute to it to

display it as some other image, such as a star:

<CheckBoxandroid:id=”@+id/star”

 style=”?android:attr/starStyle”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”/>

7.The RadioGroup encloses two RadioButtons. This is important because radio buttons are

usually used to present multiple options to the user for selection. When a RadioButton in a

RadioGroup is selected, all other RadioButtons are automatically unselected:

<RadioGroupandroid:id=”@+id/rdbGp1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:orientation=”vertical”>

 <RadioButtonandroid:id=”@+id/rdb1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Option 1”/>

 <RadioButtonandroid:id=”@+id/rdb2”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Option 2”/>

</RadioGroup>

8.The ToogleButton displays a rectangular button that users can toggle on and off by

clicking it:

<ToggleButton android:id=”@+id/toggle1”

 android:layout_width=”wrap_content”

110

 android:layout_height=”wrap_content”/>

4.1.3. Progressbar view

 The ProgressBar view provides visual feedback of some ongoing tasks, such as when

you are performing a task in the background.

 For example, you might be downloading some data from the Web and need to update

the user about the status of the download.

 In this case, the ProgressBar view is a good choice for this task.

Example

1 . Using Eclipse, create an Android project and name it as BasicViews2.

 2 . Modify the main.xml file located in the res/layout folder by adding the following code

<?xmlversion= ‖1.0‖encoding=‖utf-8‖?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<ProgressBar android:id=”@+id/progressbar”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

</LinearLayout>

 3 . In the MainActivity.java file, add the following statements:

packagenet.learn2develop.BasicViews2;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.os.Handler;

import android.widget.ProgressBar;

publicclassMainActivityextendsActivity {

private static int progress ;

private ProgressBar progressBar;

private int progressStatus = 0;

private Handler handler = new Handler();

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

111

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 progress = 0;

 progressBar = (ProgressBar) findViewById(R.id.progressbar);

 //---do some work in background thread---

 new Thread(new Runnable()

 {

public void run()

{

//---do some work here---

while (progressStatus < 10)

{

progressStatus = doSomeWork();

}

//---hides the progress bar---

handler.post(new Runnable()

{

public void run()

{

//---0 - VISIBLE; 4 - INVISIBLE; 8 - GONE---

progressBar.setVisibility(8);

}

});

}

//---do some long lasting work here---

private int doSomeWork()

{

try {

//---simulate doing some work---

Thread.sleep(500);

} catch (InterruptedException e)

{

e.printStackTrace();

}

112

return ++ progress ;

}

 }).start();

}

}

 4 . Press F11 to debug the project on the Android Emulator. after about five seconds, it will

disappear.

4.1.4 Autocomplete textview

The AutoCompleteTextView is a view that is similar to EditText (in fact it is a subclass of

EditText), except that it shows a list of completion suggestions automatically while the user

is typing.

Example:

 1 . Using Eclipse, create an Android project and name it BasicViews3.

 2 . Modify the main.xml file located in the res/layout folder

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Name of President”/>

<AutoCompleteTextView android:id=”@+id/txtCountries”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

</LinearLayout>

113

 3 . Add the following statements to the MainActivity.java file:

packagenet.learn2develop.BasicViews3;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

publicclassMainActivityextendsActivity {

String[] presidents = {

 “Dwight D. Eisenhower”,

 “John F. Kennedy”,

 “Lyndon B. Johnson”,

 “Richard Nixon”,

 “Gerald Ford” ,

 “Jimmy Carter”,

 “Ronald Reagan”,

 “George H. W. Bush”,

 “Bill Clinton”,

 “George W. Bush”,

 “Barack Obama”

};

/** Called when the activity is firstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_dropdown_item_1line, presidents);

 AutoCompleteTextView textView = (AutoCompleteTextView)

findViewById(R.id. txtCountries);

 textView.setThreshold(3);

 textView.setAdapter(adapter);

}

}

114

4 . press F11 to debug the application on the Android Emulator.

Working Principle:

In the MainActivity class, you first create a String array containing a list of presidents’

names:

String[] presidents={

 ―DwightD.Eisenhower‖,

 ―JohnF.Kennedy‖ ,

 ―LyndonB.Johnson‖ ,

 ―Richard Nixon‖,

 ―GeraldFord‖,

 ―JimmyCarter‖,

 ―RonaldReagan‖,

 ―GeorgeH.W.Bush‖,

 ―BillClinton‖ ,

 ―GeorgeW.Bush‖,

 ―BarackObama‖

};

 The ArrayAdapter object manages the array of strings that will be displayed by the

AutoCompleteTextView.

 In the preceding example, you set the AutoCompleteTextView to display in the

simple_dropdown_item_1line mode:

 The setThreshold() method sets the minimum number of characters the user must

type before the suggestions appear as a drop-down menu:

 textView.setThreshold(3);

115

 The list of suggestions to display for the AutoCompleteTextView is obtained from the

ArrayAdapter object:

 textView.setAdapter(adapter);

4.2. Advanced Views

4.2.1.Time picker view

The Time Picker view enables users to select a time of the day, in either 24-hour mode or

AM/PM mode.

Example:

 1 . Using Eclipse, create an Android project and name it BasicViews4.

 2 . Modify the main.xml file located in the res/layout folder

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<TimePicker android:id=”@+id/timePicker”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

<Button android:id=”@+id/btnSet”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:text= ”I am all set!” />

</LinearLayout>

3 . Press F11 to debug the application on the Android Emulator.

Besides clicking on the plus (+) and minus (-) buttons, you can use the numeric keypad on

the device to change the hour and minute, and click the AM button to toggle between AM

and PM.

116

4 . Back in Eclipse, add the following statements to the MainActivity.java file:

packagenet.learn2develop.BasicViews4;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TimePicker;

import android.widget.Toast;

publicclassMainActivityextendsActivity {

TimePicker timePicker;

/** Called when the activity is firstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 timePicker = (TimePicker) findViewById(R.id.timePicker);

 timePicker.setIs24HourView(true);

 //---Button view---

 Button btnOpen = (Button) findViewById(R.id.btnSet);

 btnOpen.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

Toast.makeText (getBaseContext(),

117

“Time selected:” +

timePicker.getCurrentHour() +

“:” + timePicker.getCurrentMinute(),

Toast.LENGTH_SHORT).show();

}

 });

}

}

 5 . Press F11 to debug the application on the Android Emulator. This time, the TimePicker

will be displayed in the 24-hour format.

Working Principle:

 The TimePicker displays a standard UI to enable users to set a time. By default, it

displays the time in the AM/PM format. If you wish to display the time in the 24-

hour format, you can use the setIs24HourView() method.

 To programmatically get the time set by the user, use the getCurrentHour() and

getCurrentMinute() methods:

 Toast.makeText (getBaseContext(),

 “Timeselected:”+

 timePicker.getCurrentHour() +

 “:” +timePicker.getCurrentMinute(),

 Toast.LENGTH_SHORT).show();

4.2.2.Datepicker view

Another view that is similar to the TimePicker is the DatePicker. Using the DatePicker, we

can enable users to select a particular date on the activity.

118

Example:

1 . Using the same project created in the previous Try It Out, modify the main.xml file as

shown here:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<DatePicker android:id=”@+id/datePicker”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

<TimePickerandroid:id=”@+id/timePicker”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Buttonandroid:id=”@+id/btnSet”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:text= ”Iamall set!”/>

</LinearLayout>

 2 . Press F11 to debug the application on the Android Emulator.

3 . Back in Eclipse, add in the following statements to the MainActivity.java file:

packagenet.learn2develop.BasicViews4;

importandroid.app.Activity;

119

importandroid.os.Bundle;

importandroid.view.View;

importandroid.widget.Button;

importandroid.widget.Toast;

importandroid.app.Dialog;

importandroid.app.TimePickerDialog;

importandroid.widget.TimePicker;

import android.widget.DatePicker;

publicclassMainActivityextendsActivity {

TimePickertimePicker;

DatePicker datePicker;

int hour,minute;

staticfinalint TIME_DIALOG_ID=0;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 //showDialog(TIME_DIALOG_ID);

 timePicker=(TimePicker)findViewById(R.id. timePicker);

 timePicker.setIs24HourView(true);

 datePicker = (DatePicker) findViewById(R.id.datePicker);

 //---Buttonview---

 ButtonbtnOpen=(Button) findViewById(R.id. btnSet);

 btnOpen.setOnClickListener(new View.OnClickListener(){

publicvoidonClick(Viewv){

Toast.makeText(getBaseContext(),

“Date selected:” + datePicker.getMonth() + 1 +

“/” + datePicker.getDayOfMonth() +

“/” + datePicker.getYear() + “\n” +

“Timeselected:”+timePicker.getCurrentHour()+

“:” +timePicker.getCurrentMinute(),

Toast.LENGTH_SHORT).show();

120

}

 });

}

@Override

protectedDialogonCreateDialog(int id)

{

 switch(id){

caseTIME_DIALOG_ID:

returnnew TimePickerDialog(

this,mTimeSetListener,hour,minute,false);

 }

 returnnull;

}

privateTimePickerDialog.OnTimeSetListenermTimeSetListener=

 new TimePickerDialog.OnTimeSetListener()

 {

publicvoidonTimeSet(

TimePickerview,int hourOfDay,int minuteOfHour)

{

hour=hourOfDay;

minute=minuteOfHour;

Toast.makeText (getBaseContext(),

“You have selected :“+hour+“:” +minute,

Toast.LENGTH_SHORT).show();

}

 };

}

121

 4 . Press F11 to debug the application on the Android Emulator. Once the date is set,

clicking the Button will display the date set .

Working Principle:

Like the TimePicker, you call the getMonth(), getDayOfMonth(), and getYear() methods

to get the month, day, and year, respectively:

“Dateselected:”+datePicker.getMonth()+1+“/” +datePicker.getDayOfMonth()+“/” +

datePicker.getYear()+“\n”+

4.2.3.List View

 List views are views that enable you to display a long list of items.

 In Android, there are two types of list views: ListView and SpinnerView . Both are

useful for displaying long lists of items

Example:

1. Using Eclipse, create an Android project and name it BasicView5.

2 . Modify the MainActivity.java file by inserting the statements

packagenet.learn2develop.BasicViews5;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.app.ListActivity;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ListView;

122

import android.widget.Toast;

publicclassMainActivityextendsListActivity{

String[] presidents = {

 “Dwight D. Eisenhower”,

 “John F. Kennedy”,

 “Lyndon B. Johnson”,

 “Richard Nixon”,

 “Gerald Ford” ,

 “Jimmy Carter”,

 “Ronald Reagan”,

 “George H. W. Bush”,

 “Bill Clinton”,

 “George W. Bush”,

 “Barack Obama”

};

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 //setContentView(R.layout.main);

 setListAdapter(new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1 , presidents));

}

public void onListItemClick(

ListView parent, View v, int position, long id)

{

 Toast.makeText (this,

“You have selected “ + presidents[position],

Toast.LENGTH_SHORT).show();

}

}

 3 . Press F11 to debug the application on the Android Emulator.

123

4 . Click on an item. A message containing the item selected will be displayed.

Working Principle:

 The first thing to notice in this example is that the MainActivity class extends the

ListActivity class. The ListActivity class extends the Activity class and it displays a

list of items by binding to a data source. Also, note that there is no need to modify the

main.xml file to include the ListView ; the ListActivity class itself contains a

ListView . Hence, in the onCreate() method, there is no need to call the setContent

View() method to load the UI from the main.xml file:

 //---noneedtocallthis---

 //setContentView(R.layout.main);

 In the onCreate() method, you use the setListAdapter() method to programmatically

fill the entire screen of the activity with a ListView .

 The ArrayAdapter object manages the array of strings that will be displayed by the

ListView . In the preceding example, you set the ListView to display in the

simple_list_item_1mode:

 setListAdapter(new ArrayAdapter<String>(this,

 android.R.layout.simple_list_item_1 ,presidents));

The onListItemClick() method is fired whenever an item in the ListView has been clicked:

 publicvoidonListItemClick(

 ListView parent,Viewv,int position,longid)

 {

 Toast.makeText (this,

124

 “Youhaveselected “+presidents[position],

 Toast.LENGTH_SHORT).show();

 }

4.2.4.ImageView

In Android, you can use ―android.widget.ImageView‖ class to display an image file. Image

file is easy to use but hard to master, because of the various screen and dpi in Android

devices.

Note
Please refer to this official Android’s ―Drawable Resource‖ and ―Screen Support‖ article for

better understand of how image works in Android.

1. Add Image to Resources

Put your images into folder ―res/drawable-ldpi―, ―res/drawable-mdpi‖ or ―res/drawable-

hdpi―.

See figure below, no matter which folder you put, Android will find your image

automatically. In this case, both ―android.png‖ and ―android3d.png‖ images are used for

demonstration.

Note
Again, read official Android’s ―Drawable Resource‖ and ―Screen Support‖ article to

understand what is dpi and resources in Android.

2. Add ImageView
Open ―res/layout/main.xml‖ file, just add an ImageView and Button for demonstration. By

default, imageView1 will display ―android.png‖.

File : res/layout/main.xml

http://developer.android.com/reference/android/widget/ImageView.html
http://developer.android.com/guide/topics/resources/drawable-resource.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/topics/resources/drawable-resource.html
http://developer.android.com/guide/practices/screens_support.html

125

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/android" />

 <Button

 android:id="@+id/btnChangeImage"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Change Image" />

</LinearLayout>

3. Code
Simple, when button is clicked, change it to ―android3d.png‖.

File : MyAndroidAppActivity.java

package com.mkyong.android;

import android.app.Activity;

import android.os.Bundle;

import android.widget.Button;

import android.widget.ImageView;

import android.view.View;

import android.view.View.OnClickListener;

public class MyAndroidAppActivity extends Activity {

 Button button;

 ImageView image;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 addListenerOnButton();

 }

 public void addListenerOnButton() {

126

 image = (ImageView) findViewById(R.id.imageView1);

 button = (Button) findViewById(R.id.btnChangeImage);

 button.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View arg0) {

 image.setImageResource(R.drawable.android3d);

 }

 });

 }

}

1. Result, ―android.png‖ is displayed.

2. Click on the button, image will changed to ―android3d.png‖.

127

4.2.5.Menus
Menus are a common user interface component in many types of applications. To provide a

familiar and consistent user experience, you should use the Menu APIs to present user actions

and other options in your activities.

Options menu and app bar

The options menu is the primary collection of menu items for an activity. It's where you

should place actions that have a global impact on the app, such as "Search," "Compose

email," and "Settings."

Context menu and contextual action mode

A context menu is a floating menu that appears when the user performs a long-click on an

element. It provides actions that affect the selected content or context frame.

The contextual action mode displays action items that affect the selected content in a bar at

the top of the screen and allows the user to select multiple items.

Popup menu

A popup menu displays a list of items in a vertical list that's anchored to the view that

invoked the menu. It's good for providing an overflow of actions that relate to specific

content or to provide options for a second part of a command. Actions in a popup menu

should not directly affect the corresponding content—that's what contextual actions are for.

Rather, the popup menu is for extended actions that relate to regions of content in your

activity.

Defining a Menu in XML

For all menu types, Android provides a standard XML format to define menu items. Instead

of building a menu in your activity's code, you should define a menu and all its items in an

XML menu resource. You can then inflate the menu resource (load it as a Menu object) in

your activity or fragment.

Using a menu resource is a good practice for a few reasons:

 It's easier to visualize the menu structure in XML.

 It separates the content for the menu from your application's behavioral code.

 It allows you to create alternative menu configurations for different platform

versions, screen sizes, and other configurations by leveraging the app

resources framework.

To define the menu, create an XML file inside your project's res/menu/ directory and build

the menu with the following elements:

<menu>

https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/guide/topics/ui/menus.html#options-menu
https://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
https://developer.android.com/guide/topics/ui/menus.html#CAB
https://developer.android.com/guide/topics/resources/menu-resource.html
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/guide/topics/resources/index.html
https://developer.android.com/guide/topics/resources/index.html
https://developer.android.com/guide/topics/resources/index.html

128

Defines a Menu, which is a container for menu items. A <menu> element must be the root

node for the file and can hold one or more <item> and <group> elements.

<item>

Creates a MenuItem, which represents a single item in a menu. This element may contain a

nested <menu> element in order to create a submenu.

<group>

An optional, invisible container for <item> elements. It allows you to categorize menu items

so they share properties such as active state and visibility. For more information, see the

section about Creating Menu Groups.

Here's an example menu named game_menu.xml:

<?xmlversion="1.0"encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/new_game"

 android:icon="@drawable/ic_new_game"

 android:title="@string/new_game"

 android:showAsAction="ifRoom"/>

 <item android:id="@+id/help"

 android:icon="@drawable/ic_help"

 android:title="@string/help" />

</menu>

The <item> element supports several attributes you can use to define an item's appearance

and behavior. The items in the above menu include the following attributes:

android:id

A resource ID that's unique to the item, which allows the application to recognize the item

when the user selects it.

android:icon

A reference to a drawable to use as the item's icon.

android:title

A reference to a string to use as the item's title.

android:showAsAction

Specifies when and how this item should appear as an action item in the app bar.

These are the most important attributes you should use, but there are many more available.

For information about all the supported attributes, see the Menu Resource document.

https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/view/MenuItem.html
https://developer.android.com/guide/topics/ui/menus.html#groups
https://developer.android.com/guide/topics/resources/menu-resource.html

129

You can add a submenu to an item in any menu (except a submenu) by adding

a <menu> element as the child of an <item>. Submenus are useful when your application has

a lot of functions that can be organized into topics, like items in a PC application's menu bar

(File, Edit, View, etc.). For example:<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/file"

 android:title="@string/file" >

 <!-- "file" submenu -->

 <menu>

 <item android:id="@+id/create_new"

 android:title="@string/create_new" />

 <item android:id="@+id/open"

 android:title="@string/open" />

 </menu>

 </item>

</menu>

To use the menu in your activity, you need to inflate the menu resource (convert the XML

resource into a programmable object) using MenuInflater.inflate(). In the following sections,

you'll see how to inflate a menu for each menu type

4.2.6 Analogclock and digitalclock views

 The AnalogClock view displays an analog clock with two hands — one for minutes

and one for

 hours. Its counterpart, the DigitalClock view, displays the time digitally.

 Both display the system time, and do not allow you to display a particular time.

Hence, if you want to display the time for a particular region, you have to build your

own custom views.

1.Using the AnalogClock and DigitalClock views are straightforward; simply declare them in

your XML fi le (such as main.xml), like this:

<?xml version=”1.0”encoding=”utf-8”?>

<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<AnalogClock

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

https://developer.android.com/reference/android/view/MenuInflater.html#inflate(int, android.view.Menu)

130

<DigitalClock

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

</LinearLayout>

4.2.7 .Dialog Boxes:

Main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

<Button android:text="Ok" android:id="@+id/button1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

<Button android:text="YesNo" android:id="@+id/button2"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

<Button android:text="YesNoCancel" android:id="@+id/button3"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

</LinearLayout>

131

Main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

<Button android:text="Ok" android:id="@+id/button1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

<Button android:text="YesNo" android:id="@+id/button2"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

<Button android:text="YesNoCancel" android:id="@+id/button3"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

</LinearLayout>

Act.java

package com.AlertDialogDemo;

public class act extends Activity {

/** Called when the activity is first created. */

Button b1,b2,b3;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

b1=(Button)findViewById(R.id.button1);

b2=(Button)findViewById(R.id.button2);

b3=(Button)findViewById(R.id.button3);

132

b1.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

// TODO Auto-generated method stub

AlertDialog alt=new AlertDialog.Builder(act.this).create();

alt.setTitle("New Version");

alt.setMessage("Welcome");

alt.setIcon(R.drawable.icon);

alt.setButton("Ok", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

// TODO Auto-generated method stub

Toast.makeText(getBaseContext(), "Ok", Toast.LENGTH_LONG).show();

}

});

alt.show();

}

});

b2.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

// TODO Auto-generated method stub

AlertDialog.Builder alt=new AlertDialog.Builder(act.this);

alt.setTitle("Confirm Save");

alt.setMessage("Save it");

alt.setIcon(R.drawable.icon);

alt.setPositiveButton("Yes", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

// TODO Auto-generated method stub

Toast.makeText(getBaseContext(), "Yes", Toast.LENGTH_LONG).show();

}

});

alt.setNegativeButton("No", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

// TODO Auto-generated method stub

Toast.makeText(getBaseContext(), "No", Toast.LENGTH_LONG).show();

}

133

});

alt.show();

}

});

b3.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

// TODO Auto-generated method stub

AlertDialog.Builder alt=new AlertDialog.Builder(act.this);

alt.setTitle("Confirm Delete");

alt.setMessage("Delete it");

alt.setIcon(R.drawable.icon);

alt.setPositiveButton("Yes", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

// TODO Auto-generated method stub

Toast.makeText(getBaseContext(), "Yes", Toast.LENGTH_LONG).show();

}

});

alt.setNegativeButton("No", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

// TODO Auto-generated method stub

Toast.makeText(getBaseContext(), "No", Toast.LENGTH_LONG).show();

}

});

alt.setNeutralButton("Cancel", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

// TODO Auto-generated method stub

Toast.makeText(getBaseContext(), "Cancel", Toast.LENGTH_LONG).show();

}

});

alt.show();

}

});

}

}

134

4.3.Displaying Pictures & Menus with views

To displaying images, we use the ImageView, Gallery, ImageSwitcher , and GridView

views.

4.3.1.Image View:

Gallery View:

The Gallery is a view that shows items (such as images) in a center-locked, horizontal

scrolling list.

1. Using Eclipse, create a new Android project

2 . Modify the main.xml fi le as shown

<?xml version=”1.0”encoding=”utf-8”?>

<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

135

android:text=”Images of San Francisco” />

<Gallery

android:id=”@+id/gallery1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

<ImageView

android:id=”@+id/image1”

android:layout_width=”320px”

android:layout_height=”250px”

android:scaleType= ”fitXY” />

</LinearLayout>

 3 . Right-click on the res/values folder and select New ➪ File. Name the file attrs.xml.

 4 . Populate the attrs.xml file as follows:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

<declare-styleable name=”Gallery1”>

 <attr name=”android:galleryItemBackground” />

</declare-styleable>

</resources>

 5 . Prepare a series of images and name them pic1.png , pic2.png , and so on for each

subsequent image

6 . Drag and drop all the images into the res/drawable-mdpi folder .When a dialog is

displayed, check the copy option and click OK.

7 . Add the following statements to the MainActivity.java file:

136

packagenet.learn2develop.Gallery;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.content.Context;

import android.content.res.TypedArray;

import android.view.View;

import android.view.ViewGroup;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.BaseAdapter;

import android.widget.Gallery;

import android.widget.ImageView;

import android.widget.Toast;

publicclassMainActivityextendsActivity {

//---the images to display---

Integer[] imageIDs = {

R.drawable.pic1,

R.drawable.pic2,

R.drawable.pic3,

R.drawable.pic4,

R.drawable.pic5,

R.drawable.pic6,

R.drawable.pic7

};

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Gallery gallery = (Gallery) findViewById(R.id.gallery1);

 gallery.setAdapter(new ImageAdapter(this));

 gallery.setOnItemClickListener(new OnItemClickListener()

 {

public void onItemClick(AdapterView<?> parent, View v,

137

int position, long id)

{

Toast.makeText (getBaseContext(),

“pic” + (position + 1) + “ selected”,

Toast.LENGTH_SHORT).show();

}

 });

}

public class ImageAdapter extends BaseAdapter

{

 private Context context;

 private int itemBackground;

 public ImageAdapter(Context c)

 {

context = c;

//---setting the style---

TypedArray a = obtainStyledAttributes(R.styleable.Gallery1);

itemBackground = a.getResourceId(

R.styleable.Gallery1_android_galleryItemBackground , 0);

a.recycle();

 }

 //---returns the number of images---

 public int getCount() {

return imageIDs .length;

 }

 //---returns the ID of an item---

 public Object getItem(int position) {

return position;

 }

//---returns the ID of an item---

 public long getItemId(int position) {

return position;

 }

 //---returns an ImageView view---

138

 public View getView(int position, View convertView, ViewGroup parent) {

ImageView imageView = new ImageView(context);

imageView.setImageResource(imageIDs [position]);

imageView.setScaleType(ImageView.ScaleType. FIT_XY);

imageView.setLayoutParams(new Gallery.LayoutParams(150, 120));

imageView.setBackgroundResource(itemBackground);

return imageView;

 }

}

}

 8 . Press F11 to debug the application on the Android Emulator.

 9 . You can swipe the images to view the entire series of images. Observe that as you click

on an image, the Toast class will display its name

10 . To display the selected image in the ImageView, add the following statements

MainActivity.java file:

139

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

Gallerygallery=(Gallery)findViewById(R.id. gallery1);

 gallery.setAdapter(new ImageAdapter(this));

 gallery.setOnItemClickListener(new OnItemClickListener()

 {

publicvoidonItemClick(AdapterView<?>parent,Viewv,

int position,longid)

{

Toast.makeText (getBaseContext(),

“pic”+(position+1)+“selected”,

Toast.LENGTH_SHORT).show();

//---display the images selected---

ImageView imageView = (ImageView) findViewById(R.id.image1);

imageView.setImageResource(imageIDs [position]);

}

 });

}

 11 . Press F11 to debug the application again. This time, you will see the image selected in

the ImageView

140

 Image switcher

 Gallery view together with an ImageView to display a series of thumbnail images so

that when one is selected, the selected image is displayed in the ImageView.

 However, sometimes we don’t want an image to appear abruptly when the user

selects

it in the Gallery view

 In this case, you need to use the ImageSwitcher together with the Gallery view.

Example:

1 . Using Eclipse, create a new Android project and name it as ImageSwitcher .

 2 . Modify the main.xml file by adding the following statements

<?xml version= ”1.0”encoding=”utf-8”?>

<RelativeLayoutxmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

android:background=”#ff000000”>

<Gallery

android:id=”@+id/gallery1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

<ImageSwitcher

android:id=”@+id/switcher1”

android:layout_width=”fill_parent”

141

android:layout_height=”fill_parent”

android:layout_alignParentLeft=”true”

android:layout_alignParentRight=”true”

android:layout_alignParentBottom= ”true” />

</RelativeLayout>

 3 . Right-click on the res/values folder and select New ➪ File. Name the file attrs.xml.

 4 . Populate the attrs.xml file as follows:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

<declare-styleable name=”Gallery1”>

 <attr name=”android:galleryItemBackground” />

</declare-styleable>

</resources>

 5 . Drag and drop a series of images into the res/drawable-mdpi folder When a dialog is

displayed, check the copy option and click OK.

6 . Add the following statements to the MainActivity.java file:

packagenet.learn2develop.ImageSwitcher;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.content.Context;

import android.content.res.TypedArray;

import android.view.View;

import android.view.ViewGroup;

import android.view.ViewGroup.LayoutParams;

import android.view.animation.AnimationUtils;

import android.widget.BaseAdapter;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.Gallery;

import android.widget.ViewSwitcher.ViewFactory;

import android.widget.ImageSwitcher;

import android.widget.ImageView;

publicclassMainActivityextendsActivity implements ViewFactory {

142

//---the images to display---

Integer[] imageIDs = {

R.drawable.pic1,

R.drawable.pic2,

R.drawable.pic3,

R.drawable.pic4,

R.drawable.pic5,

R.drawable.pic6,

R.drawable.pic7

};

private ImageSwitcher imageSwitcher ;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 imageSwitcher = (ImageSwitcher) findViewById(R.id.switcher1);

 imageSwitcher .setFactory(this);

 imageSwitcher .setInAnimation(AnimationUtils.loadAnimation (this,

android.R.anim.fade_in));

 imageSwitcher .setOutAnimation(AnimationUtils.loadAnimation (this,

android.R.anim.fade_out));

 Gallery gallery = (Gallery) findViewById(R.id.gallery1);

 gallery.setAdapter(new ImageAdapter(this));

 gallery.setOnItemClickListener(new OnItemClickListener()

 {

public void onItemClick(AdapterView<?> parent,

View v, int position, long id)

{

imageSwitcher .setImageResource(imageIDs [position]);

}

 });

}

public View makeView()

143

{

 ImageView imageView = new ImageView(this);

 imageView.setBackgroundColor(0xFF000000);

 imageView.setScaleType(ImageView.ScaleType. FIT_CENTER);

 imageView.setLayoutParams(new

ImageSwitcher.LayoutParams(

LayoutParams. FILL_PARENT,

LayoutParams. FILL_PARENT));

 return imageView;

}

public class ImageAdapter extends BaseAdapter

{

 private Context context;

 private int itemBackground;

 public ImageAdapter(Context c)

 {

context = c;

//---setting the style---

TypedArray a = obtainStyledAttributes(R.styleable.Gallery1);

itemBackground = a.getResourceId(

R.styleable.Gallery1_android_galleryItemBackground , 0);

a.recycle();

 }

 //---returns the number of images---

 public int getCount()

 {

return imageIDs .length;

 }

 //---returns the ID of an item---

 public Object getItem(int position)

 {

return position;

 }

 public long getItemId(int position)

144

 {

return position;

 }

 //---returns an ImageView view---

 public View getView(int position, View convertView, ViewGroup parent)

 {

ImageView imageView = new ImageView(context);

imageView.setImageResource(imageIDs [position]);

imageView.setScaleType(ImageView.ScaleType. FIT_XY);

imageView.setLayoutParams(new Gallery.LayoutParams(150, 120));

imageView.setBackgroundResource(itemBackground);

return imageView;

 }

}

}

 7 . Press F11 to debug the application on the Android Emulator.

145

4.3.2. Grid view

The GridView shows items in a two-dimensional scrolling grid.

We use the GridView together with an ImageView to display a series of images.

Example:

 1 . Using Eclipse, create a new Android project and name it Grid.

 2 . Drag and drop a series of images into the res/drawable-mdpi folder When a dialog is

displayed, check the copy option and click OK.

3 . Populate the main.xml file with the following content:

<?xml version= ”1.0”encoding=”utf-8”?>

<GridView xmlns:android=”http://schemas.android.com/apk/res/android”

android:id=”@+id/gridview”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

android:numColumns=”auto_fit”

android:verticalSpacing=”10dp”

android:horizontalSpacing=”10dp”

android:columnWidth=”90dp”

android:stretchMode=”columnWidth”

android:gravity=”center”

/>

 4 . Add the following statements to the MainActivity.java file:

packagenet.learn2develop.Grid;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.content.Context;

import android.view.View;

import android.view.ViewGroup;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.BaseAdapter;

import android.widget.GridView;

import android.widget.ImageView;

import android.widget.Toast;

146

publicclassMainActivityextendsActivity {

//---the images to display---

Integer[] imageIDs = {

R.drawable.pic1,

R.drawable.pic2,

R.drawable.pic3,

R.drawable.pic4,

R.drawable.pic5,

R.drawable.pic6,

R.drawable.pic7

};

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 GridView gridView = (GridView) findViewById(R.id.gridview);

 gridView.setAdapter(new ImageAdapter(this));

 gridView.setOnItemClickListener(new OnItemClickListener()

 {

public void onItemClick(AdapterView<?> parent,

View v, int position, long id)

{

Toast.makeText(getBaseContext(),

“pic” + (position + 1) + “ selected”,

Toast.LENGTH_SHORT).show();

}

 });

}

public class ImageAdapter extends BaseAdapter

{

 private Context context;

 public ImageAdapter(Context c)

 {

147

context = c;

 }

 //---returns the number of images---

 public int getCount() {

return imageIDs .length;

 }

 //---returns the ID of an item---

 public Object getItem(int position) {

return position;

 }

 //---returns the ID of an item---

 public long getItemId(int position) {

return position;

 }

 //---returns an ImageView view---

 public View getView(int position, View convertView,

 ViewGroup parent)

 {

ImageView imageView;

if (convertView == null) {

imageView = new ImageView(context);

imageView.setLayoutParams(new

 GridView.LayoutParams(85, 85));

imageView.setScaleType(

ImageView.ScaleType.CENTER_CROP);

imageView.setPadding(5, 5, 5, 5);

} else {

imageView = (ImageView) convertView;

}

imageView.setImageResource(imageIDs [position]);

return imageView;

 }

}

}

148

 5 . Press F11 to debug the application on the Android Emulator.

4.3.3.Creating the Menu Helper Methods

Menus with views:

Menus are useful for displaying additional options that are not directly visible on the main UI

of an application. There are two main types of menus in Android:

 Options menu — Displays information related to the current activity. In Android, you

activate the options menu by pressing the MENU key.

 Context menu — Displays information related to a particular view on an activity. In

Android, to activate a context menu you tap and hold on to it.

To activate the context menu, the user selects an item on the screen and either taps and

holds it or simply presses the center button on the directional keypad.

Creating the helper methods

Before you go ahead and create your options and context menus, you need to create two

helper methods. One creates a list of items to show inside a menu, while the other handles the

event that is fired when the user selects an item inside the menu.

Example:

1 . Using Eclipse, create a new Android project and name it as Menus.

 2 . In the MainActivity.java file, add the following statements:

packagenet.learn2develop.Menus;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.view.Menu;

149

import android.view.MenuItem;

import android.widget.Button;

import android.widget.Toast;

publicclassMainActivityextendsActivity {

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

}

private void CreateMenu(Menu menu)

{

 MenuItem mnu1 = menu.add(0, 0, 0, “Item 1”);

 {

mnu1.setAlphabeticShortcut(„a‟);

mnu1.setIcon(R.drawable.icon);

 }

 MenuItem mnu2 = menu.add(0, 1, 1, “Item 2”);

 {

mnu2.setAlphabeticShortcut(„b‟);

mnu2.setIcon(R.drawable.icon);

 }

 MenuItem mnu3 = menu.add(0, 2, 2, “Item 3”);

 {

mnu3.setAlphabeticShortcut(„c‟);

mnu3.setIcon(R.drawable.icon);

 }

 MenuItem mnu4 = menu.add(0, 3, 3, “Item 4”);

 {

mnu4.setAlphabeticShortcut(„d‟);

 }

 menu.add(0, 3, 3, “Item 5”);

 menu.add(0, 3, 3, “Item 6”);

 menu.add(0, 3, 3, “Item 7”);

150

}

private boolean MenuChoice(MenuItem item)

{

 switch (item.getItemId()) {

 case 0:

Toast.makeText (this, “You clicked on Item 1” ,

Toast.LENGTH_LONG).show();

return true;

 case 1:

Toast.makeText (this, “You clicked on Item 2” ,

Toast.LENGTH_LONG).show();

return true;

 case 2:

Toast.makeText (this, “You clicked on Item 3” ,

Toast.LENGTH_LONG).show();

return true;

 case 3:

Toast.makeText (this, “You clicked on Item 4” ,

Toast.LENGTH_LONG).show();

return true;

 case 4:

Toast.makeText (this, “You clicked on Item 5” ,

Toast.LENGTH_LONG).show();

return true;

 case 5:

Toast.makeText (this, “You clicked on Item 6” ,

Toast.LENGTH_LONG).show();

return true;

 case 6:

Toast.makeText (this, “You clicked on Item 7” ,

Toast.LENGTH_LONG).show();

return true;

 }

 return false;

151

}

}

Working Priciple:

 The preceding example creates two methods: CreateMenu() and MenuChoice().

 The CreateMenu() method takes a Menu argument and adds a series of menu items to

it.

 To add a menu item to the menu, you create an instance of the MenuItem class and

use the add() method of the Menu object.

 MenuItem mnu1=menu.add(0,0,0,“Item1”);

 {

mnu1.setAlphabeticShortcut(„a‟);

mnu1.setIcon(R.drawable.icon);

 }

The four arguments of the add() method are as follows:

 groupId — The group identifier that the menu item should be part of. Use 0 if an

item is not in a group.

 itemId — Unique item ID

 order — The order in which the item should be displayed

 title — The text to display for the menu item

 use the setAlphabeticShortcut() method to assign a shortcut key to the menu item so

that

 users can select an item by pressing a key on the keyboard. The setIcon() method sets

an image to be displayed on the menu item.

 The MenuChoice() method takes a MenuItem argument and checks its ID to

determine the menu item that is clicked. It then displays a Toast message to let the

user know which menu item was clicked.

152

4.2.4.Options menu

Example:

1 . Using the same project created in the previous section, add the following statements to

the

MainActivity.java file:

packagenet.learn2develop.Menus;

importandroid.app.Activity;

importandroid.os.Bundle;

importandroid.view.Menu;

importandroid.view.MenuItem;

importandroid.widget.Button;

importandroid.widget.Toast;

publicclassMainActivityextendsActivity {

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 super.onCreateOptionsMenu(menu);

 CreateMenu(menu);

 return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item)

{

return MenuChoice(item);

}

privatevoidCreateMenu(Menumenu)

{

 //...

153

}

privatebooleanMenuChoice(MenuItemitem)

{

 //...

}

}

 2 . Press F11 to debug the application on the Android Emulator.

Working Principle:

 To display the options menu for your activity, you need to override two methods in

your activity:

 onCreate OptionsMenu() and onOptionsItemSelected(). The onCreateOptionsMenu()

method is called when the MENU button is pressed.

 In this event, you call the CreateMenu() helper method to display the options menu.

When a menu item is selected, the onOptionsItemSelected() method is called.

 In this case, you call the MenuChoice() method to display the menu item selected

(and do whatever you want to do).

 Observe the icons displayed for menu items 1, 2, and 3. Also, if the options menu has

more than six items, a ―More‖ menu item will be displayed to indicate the additional

options.

154

4.3.7.Context menu

 A context menu is usually associated with a view on an activity, and it is displayed

when the user long clicks an item.

 For example, if the user taps on a Button view and hold it for a few seconds, a context

menu can be displayed.

 If you want to associate a context menu with a view on an activity, you need to call

the setOnCreateContextMenuListener() method of that particular view.

Example:

 1 . Using the same project created in the previous section, add the following statements to

the MainActivity.java file:

packagenet.learn2develop.Menus;

importandroid.app.Activity;

importandroid.os.Bundle;

importandroid.view.Menu;

importandroid.view.MenuItem;

155

importandroid.widget.Button;

importandroid.widget.Toast;

import android.view.View;

import android.view.ContextMenu;

import android.view.ContextMenu.ContextMenuInfo;

publicclassMainActivityextendsActivity {

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Button btn = (Button) findViewById(R.id.btn1);

 btn.setOnCreateContextMenuListener(this);

}

@Override

publicbooleanonCreateOptionsMenu(Menumenu){

 super.onCreateOptionsMenu(menu);

 CreateMenu(menu);

 returntrue;

}

@Override

publicbooleanonOptionsItemSelected(MenuItemitem)

{

returnMenuChoice(item);

}

@Override

public void onCreateContextMenu(ContextMenu menu, View view,

ContextMenuInfo menuInfo)

{

super.onCreateContextMenu(menu, view, menuInfo);

CreateMenu(menu);

}

@Override

public boolean onContextItemSelected(MenuItem item)

156

{

return MenuChoice(item);

}

privatevoidCreateMenu(Menumenu)

{

 //...

}

privatebooleanMenuChoice(MenuItemitem)

{

 //...

}

}

 2 . Press F11 to debug the application on the Android Emulator.

4.4.SMS messaging

 SMS messaging is one of the main killer applications on a mobile phone today

 Any mobile phone you buy today should have at least

 SMS messaging capabilities, and nearly all users of any age know how to send and

receive such messages.

 Android comes with a built-in SMS application that enables you to send and receive

SMS messages.

 However, in some cases you might want to integrate SMS capabilities into your own

157

Android application. For example, you might want to write an application that

automatically sends a SMS message at regular time intervals.

4.4.1 Sending SmS

Using this approach, your application can automatically send an SMS message to a recipient

without user intervention.

1. Using Eclipse, create a new Android project

2 . Add the following statements to the main.xml file:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<Button

android:id=”@+id/btnSendSMS”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text= ”Send SMS” />

</LinearLayout>

 3 . In the AndroidManifest.xml file, add the following statements

<?xmlversion= ”1.0”encoding=”utf-8”?>

<manifestxmlns:android=”http://schemas.android.com/apk/res/android”

package= ”net.learn2develop.SMS”

android:versionCode=”1”

158

android:versionName=”1.0”>

<applicationandroid:icon= ”@drawable/icon”android:label=”@string/app_name”

>

 <activityandroid:name= ”.MainActivity”

 android:label=”@string/app_name” >

<intent-filter>

<actionandroid:name= ”android.intent.action.MAIN” />

<categoryandroid:name= ”android.intent.category.LAUNCHER”/>

</intent-filter>

 </activity>

</application>

<uses-sdkandroid:minSdkVersion=”8” />

<uses-permission android:name=”android.permission.SEND_SMS”></uses-

permission>

</manifest>

 4 . Add the following statements to the MainActivity.java file:

packagenet.learn2develop.SMS;

importandroid.app.Activity;

importandroid.os.Bundle;

import android.app.PendingIntent;

import android.content.Intent;

import android.telephony.SmsManager;

import android.view.View;

import android.widget.Button;

publicclassMainActivityextendsActivity {

Button btnSendSMS;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 btnSendSMS = (Button) findViewById(R.id.btnSendSMS);

 btnSendSMS.setOnClickListener(new View.OnClickListener()

 {

159

public void onClick(View v)

{

sendSMS(“5556”, “Hello my friends!”);

}

 });

}

//---sends an SMS message to another device---

private void sendSMS(String phoneNumber, String message)

{

 SmsManager sms = SmsManager. getDefault();

 sms.sendTextMessage(phoneNumber, null, message, null, null);

}

}

 5 . Press F11 to debug the application on the Android Emulator. Using the Android

SDK and AVD Manager, launch another AVD.

 6 . On the first Android Emulator, click the Send SMS button to send an SMS message

to the second emulator.

Working Principle:

To send an SMS message programmatically, you use the SmsManager class. Unlike

other classes, you do not directly instantiate this class; instead, you call the getDefault()

static method to obtain a SmsManager object. You then send the SMS message using the

sendTextMessage() method:

privatevoidsendSMS(StringphoneNumber,Stringmessage)

{

160

 SmsManagersms =SmsManager.getDefault();

 sms.sendTextMessage(phoneNumber,null,message, null,null);

}

Following are the five arguments to the sendTextMessage() method:

 destinationAddress — Phone number of the recipient

 scAddress — Service center address; use null for default SMSC

 text — Content of the SMS message

 sentIntent — Pending intent to invoke when the message is sent

 deliveryIntent — Pending intent to invoke when the message has been delivered

4.4.2.Receiving sms messages

Besides sending SMS messages from your Android applications, you can also receive

incoming SMS messages from within your application by using a BroadcastReceiver

object. This is useful when you want your application to perform an action when a

certain SMS message is received.

Example:

1 . Using the same project created in the previous section, add the following statements

in to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>

<manifestxmlns:android=http://schemas.android.com/apk/res/android

package=”net.learn2develop.SMS”

android:versionCode=”1”

android:versionName=”1.0”>

<applicationandroid:icon= ”@drawable/icon”android:label=”@string/app_name”

>

 <activityandroid:name= ”.MainActivity”

 android:label=”@string/app_name” >

<intent-filter>

<actionandroid:name= ”android.intent.action.MAIN” />

<categoryandroid:name= ”android.intent.category.LAUNCHER”/>

</intent-filter>

 </activity>

 <receiver android:name=”.SMSReceiver”>

<intent-filter>

http://schemas.android.com/apk/res/android

161

<action android:name=

“android.provider.Telephony.SMS_RECEIVED” />

</intent-filter>

 </receiver>

</application>

<uses-sdkandroid:minSdkVersion=”8” />

<uses-permissionandroid:name= ”android.permission.SEND_SMS”></uses-

permission>

<uses-permission android:name=”android.permission.RECEIVE_SMS”>

</uses-permission>

</manifest>

 2 . In the src folder of the project, add a new Class file to the package name

and call it SMSReceiver.java

 3 . Code the SMSReceiver.java file as follows:

package net.learn2develop.SMS;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.telephony.SmsMessage;

import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver

{

@Override

public void onReceive(Context context, Intent intent)

{

 //---get the SMS message passed in---

 Bundle bundle = intent.getExtras();

 SmsMessage[] msgs = null;

 String str = “”;

 if (bundle != null)

 {

//---retrieve the SMS message received---

Object[] pdus = (Object[]) bundle.get(“pdus”);

162

msgs = new SmsMessage[pdus.length];

for (int i=0; i<msgs. length; i++){

msgs[i] = SmsMessage.createFromPdu ((byte[])pdus[i]);

str += “SMS from “ + msgs[i].getOriginatingAddress();

str += “ :”;

str += msgs[i].getMessageBody().toString();

str += “\n”;

}

//---display the new SMS message---

Toast.makeText (context, str, Toast.LENGTH_SHORT).show();

 }

}

}

 4 . Press F11 to debug the application on the Android Emulator.

 5 . Using the DDMS, send a message to the emulator. Your application should be able

to receive the message and display it using the Toast class

Working Principle:

 To listen for incoming SMS messages, you create a BroadcastReceiver class. The

BroadcastReceiver class enables your application to receive intents sent by other

applications using the sendBroadcast() method. Essentially, it enables your

application to handle events raised by other applications.

 When an intent is received, the onReceive() method is called; hence, you need to

override this.

163

 When an incoming SMS message is received, the onReceive() method is fired.

The SMS message is contained in the Intent object (intent; the second parameter

in the onReceive() method) via a Bundle object. The messages are stored in an

Object array in the PDU format.

 To extract each message, you use the static createFromPdu() method from the

SmsMessage class.

 The SMS message is then displayed using the Toast class. The phone number of

the sender is obtained via the getOriginatingAddress() method, so if you need to

send an autoreply to the sender, this is the method to obtain the sender’s phone

number.

4.4.3 Making phone calls
 Besides sending SMS messages to the emulator,we use the Telnet client to make a

phone call to the emulator. To do so, simply use the following commands.

 sTo Telnet to the emulator, use this command:

C:\telnetlocalhost5554

 To make a phone call to the emulator, use this command:

gsm call+651234567

 The syntax of the gsm send command is as follows:

gsm call<phone_number>

As with sending SMS, you can also make phone calls between AVDs by using their port

numbers as phone numbers.

Fixed Dialing

Add the Following Permissions in androidmanifest.xml

android.permission.CALL_PHONE

android.permission.MODIFY_PHONE_STATE

164

android.permission.PROCESS_OUTGOING_CALLS

android.permission.READ_PHONE_STATE

Main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<Button android:text="Fixed" android:id="@+id/button1"

android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>

<Button android:text="Dial" android:id="@+id/button2"

android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>

</LinearLayout>

AndroidManifeast.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.dialing"

android:versionCode="1"

android:versionName="1.0">

<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.CALL_PHONE">

</uses-permission>

<uses-permission android:name="android.permission.MODIFY_PHONE_STATE">

</uses-permission>

<uses-permission

android:name="android.permission.PROCESS_OUTGOING_CALLS">

</uses-permission>

<uses-permission android:name="android.permission.READ_PHONE_STATE">

</uses-permission>

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".act"

android:label="@string/app_name">

<intent-filter>

165

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Act.java

package com.dialing;

public class act extends Activity {

/** Called when the activity is first created. */

Button b1;

Button b2;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

b1=(Button)findViewById(R.id.button1);

b2=(Button)findViewById(R.id.button2);

b1.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

// TODO Auto-generated method stub

Intent in=new Intent(Intent.ACTION_CALL,Uri.parse("tel:"+5556));

startActivity(in);

}

});

b2.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

// TODO Auto-generated method stub

Intent in=new Intent(Intent.ACTION_CALL,Uri.parse("tel:"));

startActivity(in);

}

});

}

}

166

167

Review Questions

PART-A(2 Mark Questions)

1. What is a view?

2. What is meant by viewgroup?

3. What is the use of text view?

4. Define button.

5. What is an Image button?

6. Define Edit text.

7. What is the use of Checkbox?

8. What is Togglebutton?

9. What is the use of Radiobuttonview?

10. Define Progressbar View.

11. Define Timepicker View.

12. Define Datepicker View.

13. Mention some advanced views

14. What is the use of Imageview?

15. Mention the dialog boxes used in Android.

16. What is the use of Gridview?

17. Mention the types of menus used in Android.

18. What are the two ways to send SMS?

PART-B(3 Mark Questions)

1. Explain Textview.

2. Explain Button Control.

3. Explain Image button.

4. Explain Edit text.

5. Explain ToggleButton.

6. Explain Checkbox control.

7. Explain Timepicker view.

8. Explain Datepicker view

9. Explain List view

10. Explain Analog and Digital view.

168

PART-C(5&10 Mark Questions)

1. Explain basic views with example.(10)

2. Explain Radio button and Radiobutton group views with example(10)

3. Explain Progressbar view(5)

4. With example coding, explain Auto complete Text view(10)

5. Explain any 3 Advanced views in detail.(10)

6. Explain dialog boxes(5)

7. Explain diaplaying pictures with views.(10)

8. Briefly explain how to receive SMS using Android Studio.(5)

9. Explain how to make phone calls using Android Studio(5)

169

UNIT-V

LOCATION BASED SERVICES AND SQLITE

OBJECTIVES

At the end of the unit, students can

 Explain Location based Services

 Explain Sharing data

 Explain View,Modify,Add,Delete Contacts

 Explain Store and retrieve data in Internal and External Storage.

 Explain Creating and using Data bases in Android

 Explain Android Service

 Explain downloading binary data

5.1 Location Based Services

5.1.1. Obtaining the maps API key

 Beginning with the Android SDK release v1.0, you need to apply for a free Google

Maps API key before you can integrate Google Maps into your Android application.

 When you apply for the key, you must also agree to Google’s terms of use, so be sure

to read them carefully.

 To apply for a key, follow the series of steps outlined next.

 First, if you are testing the application on the Android Emulator or an Android device

directly connected to your development machine, locate the SDK debug certificate

located in the default folder (C:\Users\<username>\.android for Windows 7 users).

 You can verify the existence of the debug certificate by going to Eclipse and selecting

Window ➪ Preferences. Expand the Android item and select Build .

 On the right side of the window, you will be able to see the debug certificate’s

location.

 In this example, my MD5 fingerprint is

EF:7A:61:EA:AF:E0:B4:2D:FD:43:5E:1D:26:04:34:BA.

 Copy the MD5 certificate fingerprint and navigate your web browser to:

http://code.google.com/

170

 android/maps-api-signup.html. Follow the instructions on the page to complete the

application and obtain the Google Maps key. When you are done, you should see

something similar to what is shown in Figure below.

5.1.2.Displaying the map

You are now ready to display Google Maps in your Android application. This involves two

main

tasks:

 Modify your AndroidManifest.xml fi le by adding both the <uses-library> element

and the INTERNET permission.

 Add the MapView element to your UI.

Example:

1 . Using the project created in the previous section, add the following lines in bold to the

main.xml file (be sure to replace the value of the apiKey attribute with the API key you

obtained earlier):

<?xmlversion= ”1.0”encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<com.google.android.maps.MapView

 android:id=”@+id/mapView”

 android:layout_width=”fill_parent”

171

 android:layout_height=”fill_parent”

 android:enabled=”true”

 android:clickable=”true”

 android:apiKey=”<YOUR KEY>” />

</LinearLayout>

 2 . Add the following lines in bold to the main.xml file:

<?xmlversion= ”1.0”encoding=”utf-8”?>

<manifestxmlns:android=”http://schemas.android.com/apk/res/android”

package= ”net.learn2develop.LBS”

android:versionCode=”1”

android:versionName=”1.0”>

<applicationandroid:icon= ”@drawable/icon”android:label=”@string/app_name” >

 <uses-library android:name=”com.google.android.maps” />

 <activityandroid:name= ”.MainActivity”

 android:label=”@string/app_name” >

<intent-filter>

<actionandroid:name= ”android.intent.action.MAIN” />

<categoryandroid:name= ”android.intent.category.LAUNCHER”/>

</intent-filter>

 </activity>

</application>

<uses-sdkandroid:minSdkVersion=”8” />

<uses-permission android:name=”android.permission.INTERNET”></uses-

permission>

</manifest>

 3 . Add the following statements in bold to the MainActivity.java file. Note that

MainActivity is now extending the MapActivity class.

packagenet.learn2develop.LBS;

importandroid.app.Activity;

importandroid.os.Bundle;

import com.google.android.maps.MapActivity;

publicclassMainActivityextendsMapActivity{

/** Calledwhenthe activity isfirstcreated. */

@Override

172

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

}

 @Override

 protected boolean isRouteDisplayed() {

 // TODO Auto-generated method stub

 return false;

 }

}

 4 . Press F11 to debug the application on the Android Emulator.

5.1.3.Zoom control

 We can pan the map to any desired location and it will be updated on-the-fl y.

However, on the emulator there is no way to zoom in or out from a particular location

(on a real Android device you can pinch the map to zoom it).

 Thus, in this section, you will learn how you can let users zoom in or out of the map

using the built-in zoom controls.

Example:

1 . Using the project created in the previous activity, add in the following statements

packagenet.learn2develop.LBS;

importandroid.app.Activity;

importandroid.os.Bundle;

importcom.google.android.maps.MapActivity;

173

import com.google.android.maps.MapView;

publicclassMainActivityextendsMapActivity{

MapView mapView;

/**Calledwhentheactivityisfirstcreated.*/

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

setContentView(R.layout.main);

 mapView = (MapView) findViewById(R.id.mapView);

 mapView.setBuiltInZoomControls(true);

}

@Override

protectedbooleanisRouteDisplayed() {

 //TODOAuto-generatedmethodstub

 returnfalse;

}

}

 2 . Press F11 to debug the application on the Android Emulator. Observe the built-in zoom

controls that appear at the bottom of the map when you click and drag the map

You can click the minus (–) icon to zoom out of the map and the plus (+) icon to zoom into

the map.

Working Principle

 To display the built-in zoom controls, you first get a reference to the map and then

call the setBuiltInZoomControls() method:

 mapView=(MapView)findViewById(R.id. mapView);

 mapView.setBuiltInZoomControls(true);

 Besides displaying the zoom controls, you can also programmatically zoom in or out

of the map using the zoomIn() or zoomOut() method of the MapController class.

 1 . Using the project created in the previous activity, add the following statements to the

MainActivity.java file:

packagenet.learn2develop.LBS;

importandroid.app.Activity;

174

importandroid.os.Bundle;

importcom.google.android.maps.MapActivity;

importcom.google.android.maps.MapView;

import android.view.KeyEvent;

import com.google.android.maps.MapController;

publicclassMainActivityextendsMapActivity{

MapViewmapView;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mapView=(MapView)findViewById(R.id. mapView);

 mapView.setBuiltInZoomControls(true);

}

 public boolean onKeyDown(int keyCode, KeyEvent event)

 {

 MapController mc = mapView.getController();

 switch (keyCode)

 {

 case KeyEvent.KEYCODE_3:

 mc.zoomIn();

 break;

 case KeyEvent.KEYCODE_1:

 mc.zoomOut();

 break;

 }

 return super.onKeyDown(keyCode, event);

 }

@Override

protectedbooleanisRouteDisplayed() {

 //TODOAuto-generatedmethodstub

 returnfalse;

}

175

}

 2 . Press F11 to debug the application on the Android Emulator. You can now zoom into

the map by pressing the numeric 3 key on the emulator. To zoom out of the map, press the

numeric 1 key.

Working Principle:

To handle key presses on your activity, you handle the onKeyDown event:

publicbooleanonKeyDown(int keyCode, KeyEvent event)

{

 //...

}

 To manage the panning and zooming of the map, you need to obtain an instance of the

MapController class from the MapView object.

 The MapController class contains the zoomIn() and zoomOut() methods (plus some

other methods to control the map) to enable users to zoom in or out of the map,

respectively.

5.1.4.Navigating to a Specific location

 By default, Google Maps displays the map of the United States when it is first loaded.

However, you can also set Google Maps to display a particular location.

 In this case, you can use the animateTo() method of the MapController class.

Example:

1 . Using the project created in the previous activity, add the following statements to the

MainActivity.java file:

packagenet.learn2develop.LBS;

importandroid.app.Activity;

importandroid.os.Bundle;

importandroid.view.KeyEvent;

importcom.google.android.maps.MapActivity;

importcom.google.android.maps.MapController;

importcom.google.android.maps.MapView;

import com.google.android.maps.GeoPoint;

publicclassMainActivityextendsMapActivity{

MapViewmapView;

 MapController mc;

176

 GeoPoint p;

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mapView=(MapView)findViewById(R.id. mapView);

 mapView.setBuiltInZoomControls(true);

 //mapView.setSatellite(true);

 mapView.setStreetView(true);

 mc = mapView.getController();

 String coordinates[] = {“1.352566007” , “103.78921587”};

 double lat = Double.parseDouble(coordinates[0]);

 double lng = Double.parseDouble(coordinates[1]);

 p = new GeoPoint(

 (int) (lat * 1E6),

 (int) (lng * 1E6));

 mc.animateTo(p);

 mc.setZoom(13);

 mapView.invalidate();

}

publicbooleanonKeyDown(int keyCode, KeyEvent event)

{

 MapController mc=mapView.getController();

 switch(keyCode)

 {

caseKeyEvent.KEYCODE_3:

mc.zoomIn();

break;

caseKeyEvent.KEYCODE_1:

mc.zoomOut();

break;

 }

 returnsuper.onKeyDown(keyCode,event);

177

}

@Override

protectedbooleanisRouteDisplayed() {

 //TODOAuto-generatedmethodstub

 returnfalse;

}

}

 2 . Press F11 to debug the application on the Android Emulator. When the map is loaded,

observe that it now animates to a particular location in Singapore .

Working Principle:

 In the preceding code, you first obtain a map controller from the MapView instance

and assign it to a MapController object (mc). You then use a GeoPoint object to

represent a geographical location.

 To navigate the map to a particular location, you can use the animateTo() method of

the MapController class. The setZoom() method enables you to specify the zoom

level at which the map is displayed (the bigger the number, the more details you see

on the map). The invalidate() method forces the MapView to be redrawn.

5.1.5Adding markers

Adding markers to a map to indicate places of interest enables your users to easily locate the

places they are looking for. The following Try It Out shows you how to add a marker to

Google Maps.

Example:

178

1 . Create a GIF image containing a pushpin and copy it into the res/drawable-mdpi folder

of the project. For the best effect, make the background of the image transparent so that it

does not

block parts of the map when the image is added to the map.

 2 . Using the project created in the previous activity, add the following

statements to the MainActivity.java file:

packagenet.learn2develop.LBS;

importandroid.app.Activity;

importandroid.os.Bundle;

importandroid.view.KeyEvent;

importcom.google.android.maps.GeoPoint;

importcom.google.android.maps.MapActivity;

importcom.google.android.maps.MapController;

importcom.google.android.maps.MapView;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.graphics.Canvas;

import android.graphics.Point;

import com.google.android.maps.Overlay;

import java.util.List;

publicclassMainActivityextendsMapActivity{

MapViewmapView;

MapController mc;

GeoPoint p;

 class MapOverlay extends com.google.android.maps.Overlay

 {

 @Override

 public boolean draw(Canvas canvas, MapView mapView,

 boolean shadow, long when)

 {

 super.draw(canvas, mapView, shadow);

 //---translate the GeoPoint to screen pixels---

 Point screenPts = new Point();

 mapView.getProjection().toPixels(p, screenPts);

179

 //---add the marker---

 Bitmap bmp = BitmapFactory.decodeResource(

 getResources(), R.drawable. pushpin);

 canvas.drawBitmap(bmp, screenPts.x, screenPts.y-50, null);

 return true;

 }

 }

/** Calledwhenthe activity isfirstcreated. */

@Override

publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mapView=(MapView)findViewById(R.id. mapView);

 mapView.setBuiltInZoomControls(true);

 //mapView.setSatellite(true);

 //mapView.setStreetView(true);

 mc=mapView.getController();

 Stringcoordinates[] ={“1.352566007” ,“103.78921587”};

 doublelat =Double.parseDouble(coordinates[0]);

 doublelng =Double.parseDouble(coordinates[1]);

 p=new GeoPoint(

(int)(lat*1E6),

(int)(lng*1E6));

 mc.animateTo(p);

 mc.setZoom(13);

 //---Add a location marker---

 MapOverlay mapOverlay = new MapOverlay();

 List<Overlay> listOfOverlays = mapView.getOverlays();

 listOfOverlays.clear();

 listOfOverlays.add(mapOverlay);

 mapView.invalidate();

}

publicbooleanonKeyDown(int keyCode, KeyEvent event)

{

180

 MapController mc=mapView.getController();

 switch(keyCode)

 {

caseKeyEvent.KEYCODE_3:

mc.zoomIn();

break;

caseKeyEvent.KEYCODE_1:

mc.zoomOut();

break;

 }

 returnsuper.onKeyDown(keyCode,event);

}

@Override

protectedbooleanisRouteDisplayed() {

 //TODOAuto-generatedmethodstub

 returnfalse;

}

}

 3 . Press F11 to debug the application on the Android Emulator. Figure 9-13 shows the

marker added to the map.

181

Working Principle:

1)To add a marker to the map, you first need to define a class that extends the Overlay class:

classMapOverlayextendscom.google.android.maps.Overlay

{

 @Override

 publicbooleandraw(Canvascanvas,MapViewmapView,

 booleanshadow,longwhen)

 {

//...

 }

}

2)An overlay represents an individual item that you can draw on the map. You can add as

many overlays as you want. In the MapOverlay class, override the draw() method so that

you can draw the pushpin image on the map. In particular, note that you need to translate the

geographical location (represented by a GeoPoint object, p) into screen coordinates:

//---translatethe GeoPoint toscreenpixels---

PointscreenPts=new Point();

mapView.getProjection().toPixels(p,screenPts);

3)Because you want the pointed tip of the pushpin to indicate the position of the location, you

need to deduct the height of the image (which is 50 pixels) from the y coordinate of the point

and draw the image at that location:

//---add the marker---

Bitmapbmp =BitmapFactory.decodeResource(

getResources(),R.drawable.pushpin);

canvas.drawBitmap(bmp,screenPts.x,screenPts.y-50,null);

4)To add the marker, create an instance of the MapOverlay class and add it to the list of

overlays available on the MapView object:

 //---Add alocation marker---

 MapOverlaymapOverlay=new MapOverlay();

 List<Overlay> listOfOverlays=mapView.getOverlays();

 listOfOverlays.clear();

 listOfOverlays.add(mapOverlay);

5.1.6.Geocoding and reverse geocoding

182

 As mentioned in the preceding section, if you know the latitude and longitude of a

location, you can find out its address using a process known as reverse geocoding.

 Google Maps in Android supports this via the Geocoder class.

 The following code snippet shows how you can retrieve the address of a location just

touched using the getFromLocation() method:

Example:

importandroid.location.Address;

importandroid.location.Geocoder;

importjava.util.Locale;

importjava.io.IOException;

//...

 @Override

 publicbooleanonTouchEvent(MotionEventevent,MapViewmapView)

 {

//---whenuserliftshis finger---

if(event.getAction() ==1){

GeoPoint p=mapView.getProjection().fromPixels(

(int)event.getX(),

(int)event.getY());

/*

Toast.makeText(getBaseContext(),

“Location:“+

p.getLatitudeE6()/1E6 +“,” +

p.getLongitudeE6() /1E6,

Toast.LENGTH_SHORT).show();

*/

 Geocoder geoCoder = new Geocoder(

 getBaseContext(), Locale.getDefault());

 try {

 List<Address> addresses = geoCoder.getF romLocation(

 p.getLatitudeE6() / 1E6,

 p.getLongitudeE6() / 1E6, 1);

 String add = “”;

183

 if (addresses.size() > 0)

 {

 for (int i=0; i<addresses.get(0).getMaxAddressLineIndex();

 i++)

 add += addresses.get(0).getAddre ssLine(i) + “\n”;

 }

 Toast.makeText (getBaseContext(), add,

Toast.LENGTH_SHORT).show();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 return true;

}

returnfalse;

 }

}

Working Principle:

 The Geocoder object converts the latitude and longitude into an address using the

getFromLocation() method. Once the address is obtained, you display it using the

Toast class.

 If you know the address of a location but want to know its latitude and longitude, you

can do so via geocoding.

 Again, you can use the Geocoder class for this purpose. The following code shows

how you can find the exact location of the Empire State Building by using the

getFromLocationName() method:

 //---geo-coding---

 Geocoder geoCoder = new Geocoder(this, Locale.getDefault());

 try {

 List<Address> addresses = geoCoder.getFromLocationN ame(

 “empire state building” , 5);

 String add = “”;

 if (addresses.size() > 0) {

184

 p = new GeoPoint(

 (int) (addresses.get(0).getLatitude() * 1E6),

 (int) (addresses.get(0).getLongitude() * 1E6));

 mc.animateTo(p);

 mapView.invalidate();

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

5.2. Content Provider

5.2.1.Sharing data in Android

 In Android, using a content provider is the recommended way to share data across

packages.

 Think of a content provider as a data store.

 How it stores its data is not relevant to the application using it; what is important is

how packages can access the data stored in it using a consistent programming

interface.

 A content provider behaves very much like a database ,you can query it, edit its

content, as well as add or delete its content. However, unlike a database, a content

provider can use different ways to store its data.

 The data can be stored in a database, in files, or even over a network.

 Android ships with many useful content providers, including the following:

 Browser — Stores data such as browser bookmarks, browser history, and so

on

 CallLog — Stores data such as missed calls, call details, and so on

 Contacts — Stores contact details

 MediaStore — Stores media files such as audio, video and images

185

 Settings — Stores the device’s settings and preferences

 Besides the many built-in content providers, you can also create your own content

providers.

 To query a content provider, you specify the query string in the form of a URI, with

an optional specifier for a particular row.

 The format of the query URI is as follows:

<standard_prefix>://<authority>/<data_path>/<id>

 The various parts of the URI are as follows:

➤➤ The standard prefix for content providers is always content://.

➤➤ The authority specifies the name of the content provider. An example would be

contacts for the built-in Contacts content provider. For third-party content providers,

this could be the fully qualified name, such as com.wrox.provider

net.learn2develop.provider.

➤➤ The data path specifies the kind of data requested. For example, if you are

getting all the contacts from the Contacts content provider, then the data path would

be people, and the URI would look like this: content://contacts/people.

➤➤ The id specifies the specific record requested. For example, if you are looking

for contact number 2 in the Contacts content provider, the URI would look like this:

content://contacts/people/2.

186

5.2.2.Phone Contacts:

Set Permission

AndroidManifest.xml

<uses-permission android:name="android.permission.READ_CONTACTS" />

<uses-permission android:name="android.permission.WRITE_CONTACTS" />

package com.phonecontacts;

import android.app.Activity;

import android.database.Cursor;

import android.os.Bundle;

import android.provider.ContactsContract;

import android.widget.Toast;

public class PhoneContacts extends Activity {

 /** Called when the activity is first created. */

 int count=0;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 try{

 Cursor cursor = getContentResolver().query(ContactsContract.

 CommonDataKinds.Phone.CONTENT_URI, null, null,null,

null);

 while (cursor.moveToNext())

 {

String name =cursor.getString(cursor.getColumnIndex

(ContactsContract.CommonDataKinds.Phone.DISPLAY_NAME));

 String phoneNumber = cursor.getString(cursor.getColumnIndex

 (ContactsContract.CommonDataKinds.Phone.NUMBER));

 String data =name+","+phoneNumber+"\n";

187

 Toast.makeText(getBaseContext(), data, Toast.LENGTH_LONG).show();

 count=count +1;

 }

 }catch(Exception e)

 {

 Toast.makeText(getBaseContext(), e.getMessage(),

Toast.LENGTH_LONG).show();

 }

 Toast.makeText(getBaseContext(), "Total Contacts ="+ count,

 Toast.LENGTH_LONG).show();

 }

 }

Cursor cursor = getContentResolver().query(ContactsContract.

 CommonDataKinds.Phone.CONTENT_URI, null, null,null,

null);

public ContentResolver getContentResolver ()

Return a ContentResolver instance for your application's package.

http://developer.android.com/reference/android/content/ContentResolver.html

188

1.1.1.1 public final Cursor query (Uri uri, String[] projection, String selection, String[]
selectionArgs, String sortOrder)

Query the given URI, returning a Cursor over the result set.

For best performance, the caller should follow these guidelines:

 Provide an explicit projection, to prevent reading data from storage that aren't going

to be used.

 Use question mark parameter markers such as 'phone=?' instead of explicit values in

the selection parameter, so that queries that differ only by those values will be

recognized as the same for caching purposes.

1.1.1.1.1 Parameters

uri The URI, using the content:// scheme, for the content to retrieve.

projection
A list of which columns to return. Passing null will return all columns, which

is inefficient.

selection

A filter declaring which rows to return, formatted as an SQL WHERE clause

(excluding the WHERE itself). Passing null will return all rows for the given

URI.

selectionArgs

You may include ?s in selection, which will be replaced by the values from

selectionArgs, in the order that they appear in the selection. The values will

be bound as Strings.

sortOrder

How to order the rows, formatted as an SQL ORDER BY clause (excluding

the ORDER BY itself). Passing null will use the default sort order, which

may be unordered.

1.1.1.1.2 Returns

 A Cursor object, which is positioned before the first entry, or null

5.3.Data Persistence

5.3.1.Programmatically Retrieving and Modifying the Preferences

valuesPreferences

 Android has a concept of shared preferences using which application preferences data

can be stored persistently.

 That means the data or state won’t be lost until the application is uninstalled. The

preferences data can be stored as key/value pairs and are available across all the

Activities of the given application or can also be restricted to a particular Activity.

http://developer.android.com/reference/android/database/Cursor.html
http://developer.android.com/reference/android/net/Uri.html
http://developer.android.com/reference/java/lang/String.html
http://developer.android.com/reference/java/lang/String.html
http://developer.android.com/reference/java/lang/String.html
http://developer.android.com/reference/java/lang/String.html
http://developer.android.com/reference/android/database/Cursor.html

189

SharedPreferences

 Using the SharedPreferences interface implementations we can store persistent sets of

data in the filesystem. The data will be available across application restarts or even

device stop/start.

 Shared Preferences can be stored at 2 levels – activity or application. To get a

SharedPreferences object for your activity or application in order to start storing,

retrieving and updating data there are two methods:

 getSharedPreferences() – Application-wide preferences file identified by the name

passed to it as the first argument.

 getPreferences() – Activity-level preferences object where no name is specified as

there will be only one file for an Activity.

Working Principle:

SharedPreferences pref = getSharedPreferences("MyPrefs", Context.MODE_PRIVATE);

You can store as many shared preferences as you want for your application and all of them

will keep on getting saved in the XML file named MyPrefs which is usually located

at /data/data/[package name]/shared_prefs/MyPrefs.xml.

You can browse that in the File Explorer in the DDMS view or if your device is rooted then

go ahead and explore it in $ adb shell.

The image shows my app specific data (including shared preferences) in DDMS.

com.pycitup.pyc is my application’s package name.

Storing Preferences

 Once you’ve decided whether you want application preferences or activity one, then

you’ll start storing data into it. Once you’ve a valid SharedPreferences object you

call edit() method on it to fetch a SharedPreferences.Editor object whose public

method will allow us to start writing data to the file.

 To store primitive data it has various methods

like putBoolean(), putFloat(), putInt(), putLong() and putString().

http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/content/Context.html#getSharedPreferences(java.lang.String, int)
http://developer.android.com/reference/android/app/Activity.html#getPreferences(int)
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/reference/android/content/SharedPreferences.Editor.html

190

Let’s try storing some values:

SharedPreferences pref = getSharedPreferences("MyPrefs", Context.MODE_PRIVATE);

// We need an editor object to make changes

SharedPreferences.Editor edit = pref.edit();

// Set/Store data

edit.putString("username", "Rishabh");

edit.putBoolean("logged_in", true);

// Commit the changes

edit.commit();

We stored 2 key-value pairs. This is how our /data/data/[package

name]/shared_prefs/MyPrefs.xml should look like now:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

<map>

 <string name="username">Rishabh</string>

 <boolean name="logged_in" value="true" />

</map>

Notice we had to use the commit() method to commit our changes. There’s another method to

do the same which is apply() but that is asynchronous and won’t report failures.

Modifying Preferences

 Updating the preferences is similar to the setting them that we just learnt a bit back.

Get the SharedPreferences.Editor object, set values using the put*() methods and then

commit your changes.

SharedPreferences pref = getSharedPreferences("MyPrefs", Context.MODE_PRIVATE);

// We need an editor object to make changes

SharedPreferences.Editor edit = pref.edit();

// Set/Store data

edit.putString("username", "CodeTheory");

edit.putBoolean("logged_in", false);

// Commit the changes

edit.commit();

Same code but different values. The new XML contents looks like this:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

<map>

 <boolean name="logged_in" value="false" />

 <string name="username">CodeTheory</string>

http://developer.android.com/reference/android/content/SharedPreferences.Editor.html#commit()
http://developer.android.com/reference/android/content/SharedPreferences.Editor.html#apply()

191

</map>

Retrieving Preferences

 Fetching the preferences is done directly on the SharedPreferencesobject.

So SharedPreferences.Editor is not required.

 There are several `get` methods for this job

like getBoolean(), getFloat(), getInt(), getLong() and getString(). All of them accept

two arguments where the first is the name of the key while the second non-optional

one is the default value to return if the preference does not exists (is undefined).

SharedPreferences pref = getSharedPreferences("MyPrefs", Context.MODE_PRIVATE);

String username = pref.getString("username", "");

boolean logged_in = String.valueOf(pref.getBoolean("logged_in", false);

Log.d(TAG, username);

Log.d(TAG, String.valueOf(logged_in));

The code logged CodeTheory and false in separate lines.

Deleting Preferences

Deleting a particular preference is super simple. Just call the remove() method

and commit your changes.

// Remove a particular key

pref.remove("username");

// Commit changes

pref.commit();

5.3.2.Saving to Internal Storage

The first way to save files in your Android application is to write to the device’s internal

storage.

1. Using Eclipse, create an Android project and name it as

2. In the main.xml file, add the following statements in bold:

<?xml version=‖1.0‖ encoding=‖utf-8‖?>

<LinearLayout xmlns:android=‖http://schemas.android.com/apk/res/android‖

android:orientation=‖vertical‖

android:layout_width=‖fill_parent‖

android:layout_height=‖fill_parent‖ >

<TextView

android:layout_width=”fill_parent”

http://developer.android.com/reference/android/content/SharedPreferences.Editor.html#remove(java.lang.String)

192

android:layout_height=”wrap_content”

android:text=”Please enter some text”

/>

<EditText

android:id=”@+id/txtText1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

<Button

android:id=”@+id/btnSave”

android:text=”Save”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

<Button

android:id=”@+id/btnLoad”

android:text=”Load”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

</LinearLayout>

193

3. In the MainActivity.java file, add the following statements in bold:

package net.learn2develop.Files;

import android.app.Activity;

import android.view.View;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import android.os.Bundle;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

private EditText textBox;

private static final int READ_BLOCK_SIZE = 100;

194

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

textBox = (EditText) findViewById(R.id.txtText1);

Button saveBtn = (Button) findViewById(R.id.btnSave);

Button loadBtn = (Button) findViewById(R.id.btnLoad);

saveBtn.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

String str = textBox.getText().toString();

try

{

FileOutputStream fOut =

openFileOutput(“textfile.txt”,

MODE_WORLD_READABLE);

OutputStreamWriter osw = new

OutputStreamWriter(fOut);

//---write the string to the file---

osw.write(str);

osw.flush();

osw.close();

//---display file saved message---

Toast.makeText(getBaseContext(),

“File saved successfully!”,

Toast.LENGTH_SHORT).show();

//---clears the EditText---

textBox.setText(“”);

}

catch (IOException ioe)

{

ioe.printStackTrace();

}

}

195

});

loadBtn.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

try

{

FileInputStream fIn =

openFileInput(“textfile.txt”);

InputStreamReader isr = new

InputStreamReader(fIn);

char[] inputBuffer = new char[READ_BLOCK_SIZE];

String s = “”;

int charRead;

while ((charRead = isr.read(inputBuffer))>0)

{

//---convert the chars to a String---

String readString =

String.copyValueOf(inputBuffer, 0,

charRead);

s += readString;

inputBuffer = new char[READ_BLOCK_SIZE];

}

//---set the EditText to the text that has been

// read---

textBox.setText(s);

Toast.makeText(getBaseContext(),

“File loaded successfully!”,

Toast.LENGTH_SHORT).show();

}

catch (IOException ioe) {

ioe.printStackTrace();

}

}

});

}

196

}

4. Press F11 to debug the application on the Android Emulator.

5. Type some text into the EditText view and then click the Save button.

6. If the file is saved successfully, you will see the Toast class displaying the ―File saved

successfully!‖message. The text in the EditText view should disappear.

7. Click the Load button and you should see the string appearing in the EditText view again.

This

confirms that the text is saved correctly.

Working Principle:

 To save text into a file, you use the FileOutputStream class. The openFileOutput()

method opens a named file for writing, with the mode specified.

 In this example, you use the MODE_WORLD_READABLE constant to indicate

that the file is readable by all other applications:

FileOutputStream fOut

=openFileOutput(“textfile.txt”,MODE_WORLD_READABLE);

 Apart from the MODE_WORLD_READABLE constant, you can select from the

following:

MODE_PRIVATE (filecan only be accessed by the application that created it),

MODE_APPEND (for appending to an existing file),

 and MODE_WORLD_WRITEABLE (all other applications have write

 access to the file).

197

 To convert a character stream into a byte stream, you use an instance of the

OutputStreamWriter class,by passing it an instance of the FileOutputStream object:

OutputStreamWriter osw = newOutputStreamWriter(fOut);

MODE_PRIVATE (filecan only be accessed by the application that created it),

MODE_APPEND (for appending to an existing file),

and MODE_WORLD_WRITEABLE (all other applications have write access

 to the file).

 You then use its write() method to write the string to the file. To ensure that all the

bytes are writtento the file, use the flush() method. Finally, use the close() method to

close the file:

osw.write(str);

osw.flush();

osw.close();

 To read the content of a file, you use the FileInputStream class, together with the

InputStreamReader class:

FileInputStream fIn =openFileInput(“textfile.txt”);

InputStreamReader isr = newInputStreamReader(fIn);

 As you do not know the size of the file to read, the content is read in blocks of 100

characters into abuffer (character array). The characters read are then copied into a

String object:

char[] inputBuffer = new char[READ_BLOCK_SIZE];

String s = “”;int charRead;

while ((charRead = isr.read(inputBuffer))>0)

{

//---convert the chars to a String---

String readString =String.copyValueOf(inputBuffer, 0,charRead);

s += readString;

inputBuffer = new char[READ_BLOCK_SIZE];

}

 The read() method of the InputStreamReader object reads the number of characters

read and returns -1if the end of the file is reached.

198

 When testing this application on the Android Emulator, you can use the DDMS to

verify that the applicationdid indeed save the file into the application’s files directory

5.3.2.Saving to External Storage (SD Card)

 Sometimes, Information would be useful to save them to external storage (such as an

SD card) because of its larger capacity, as well as the capability to share the files

easily with other users (by removing the SD card and passing it to somebody else).

 Using the project created in the previous section as the example, to save the text

entered by the user in the SD card, modify the onClick() method of the Save button as

shown in bold here:

saveBtn.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

String str = textBox.getText().toString();

try

{

//---SD Card Storage---

File sdCard = Environment.getExternalStorageDirectory();

File directory = new File (sdCard.getAbsolutePath() +

“/MyFiles”);

directory.mkdirs();

File file = new File(directory, “textfile.txt”);

FileOutputStream fOut = new FileOutputStream(file);

OutputStreamWriter osw = new

199

OutputStreamWriter(fOut);

//---write the string to the file---

osw.write(str);

osw.flush();

osw.close();

//---display file saved message---

Toast.makeText(getBaseContext(),

―File saved successfully!‖,Toast.LENGTH_SHORT).show();

//---clears the EditText---

textBox.setText(―‖);

}

catch (IOException ioe)

{

ioe.printStackTrace();

}

}

});

 The preceding code uses the getExternalStorageDirectory() method to return the full

path to the external storage. Typically, it should return the ―/sdcard‖ path for a real

device, and ―/mnt/sdcard‖for an Android Emulator.

 However, you should never try to hardcode the path to the SD card, as

manufacturers may choose to assign a different path name to the SD card. Hence, be

sure to use thegetExternalStorageDirectory() method to return the full path to the SD

card.

 You then create a directory called MyFiles in the SD card. Finally, you save the file

into this directory.To load the file from the external storage, modify the onClick()

method for the Load button:

loadBtn.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

try

{

//---SD Storage---

File sdCard = Environment.getExternalStorageDirectory();

200

File directory = new File (sdCard.getAbsolutePath() +

“/MyFiles”);

File file = new File(directory, “textfile.txt”);

FileInputStream fIn = new FileInputStream(file);

InputStreamReader isr = new InputStreamReader(fIn);

char[] inputBuffer = new char[READ_BLOCK_SIZE];

String s = ―‖;

int charRead;

while ((charRead = isr.read(inputBuffer))>0)

{

//---convert the chars to a String---

String readString =

String.copyValueOf(inputBuffer, 0, charRead);

s += readString;

inputBuffer = new char[READ_BLOCK_SIZE];

}

//---set the EditText to the text that has been

// read---

textBox.setText(s);

Toast.makeText(getBaseContext(),

―File loaded successfully!‖,

Toast.LENGTH_SHORT).show();

}

catch (IOException ioe) {

ioe.printStackTrace();

}

}

});

 Note that in order to write to the external storage, you need to add the

WRITE_EXTERNAL_STORAGE permission in your Android Manifest.xml file:

<?xml version=‖1.0‖ encoding=‖utf-8‖?>

<manifest xmlns:android=‖http://schemas.android.com/apk/res/android‖

package=‖net.learn2develop.Files‖

android:versionCode=‖1‖

201

android:versionName=‖1.0‖>

<application android:icon=‖@drawable/icon‖

android:label=‖@string/app_name‖>

<activity android:name=‖.MainActivity‖

android:label=‖@string/app_name‖>

<intent-filter>

<action android:name=‖android.intent.action.MAIN‖ />

<category android:name=‖android.intent.category.LAUNCHER‖ />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion=‖9‖ />

<uses-permission

android:name=”android.permission.WRITE_EXTERNAL_STORAGE”

>

</uses-permission>

5.3.4.Creating and Using Databases

 All the techniques you have seen are useful for saving simple sets of data. For saving

relational data, using a database is much more efficient.

 For example, if you want to store the results of all the students in a school, it is much

more efficient to use a database to represent them because you can use database

querying to retrieve the results of the specific students.

 Moreover, using databases enables you to enforce data integrity by specifying the

relationships between different sets of data. Android uses the SQLite database system.

 The database that you create for an application is only accessible to itself; other

applications will not be able to access it.

 For Android, the SQLite database that you create programmatically in an application

is

always stored in the /data/data/<package_name>/databases folder.

Creating the DBAdapter Helper Class

 A good practice for dealing with databases is to create a helper class to encapsulate all

the complexities of accessing the data so that it is transparent to the calling code.

202

 In this example, you are going to create a database named MyDB containing one table

named contacts. This table will have three columns: _id,name, and email

Example:

1. Using Eclipse, create an Android project and name it Databases.

2. Add a new class file to the project and name it DBAdapter.java

3. Add the following statements in bold to the DBAdapter.java file:

package net.learn2develop.Databases;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.util.Log;

public class DBAdapter {

public static final String KEY_ROWID = “_id”;

public static final String KEY_NAME = “name”;

public static final String KEY_EMAIL = “email”;

private static final String TAG = “DBAdapter”;

private static final String DATABASE_NAME = “MyDB”;

private static final String DATABASE_TABLE = “contacts”;

private static final int DATABASE_VERSION = 1;

private static final String DATABASE_CREATE =

“create table contacts (_id integer primary key autoincrement, “

+ “name text not null, email text not null);”;

private final Context context;

private DatabaseHelper DBHelper;

private SQLiteDatabase db;

public DBAdapter(Context ctx)

{

this.context = ctx;

DBHelper = new DatabaseHelper(context);

}

private static class DatabaseHelper extends SQLiteOpenHelper

203

{

DatabaseHelper(Context context)

{

super(context, DATABASE_NAME, null, DATABASE_VERSION);

}

@Override

public void onCreate(SQLiteDatabase db)

{

try {

db.execSQL(DATABASE_CREATE);

} catch (SQLException e) {

e.printStackTrace();

}

}

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)

{

Log.w(TAG, “Upgrading database from version “ + oldVersion + “ to “

+ newVersion + “, which will destroy all old data”);

db.execSQL(“DROP TABLE IF EXISTS contacts”);

onCreate(db);

}

}

//---opens the database---

public DBAdapter open() throws SQLException

{

db = DBHelper.getWritableDatabase();

return this;

}

//---closes the database---

public void close()

{

DBHelper.close();

}

204

//---insert a contact into the database---

public long insertContact(String name, String email)

{

ContentValues initialValues = new ContentValues();

initialValues.put(KEY_NAME, name);

initialValues.put(KEY_EMAIL, email);

return db.insert(DATABASE_TABLE, null, initialValues);

}

//---deletes a particular contact---

public boolean deleteContact(long rowId)

{

return db.delete(DATABASE_TABLE, KEY_ROWID + “=” + rowId, null) > 0;

}

//---retrieves all the contacts---

public Cursor getAllContacts()

{

return db.query(DATABASE_TABLE, new String[] {KEY_ROWID, KEY_NAME,

KEY_EMAIL}, null, null, null, null, null);

}

//---retrieves a particular contact---

public Cursor getContact(long rowId) throws SQLException

{

Cursor mCursor =

db.query(true, DATABASE_TABLE, new String[] {KEY_ROWID,

KEY_NAME, KEY_EMAIL}, KEY_ROWID + “=” + rowId, null,

null, null, null, null);

if (mCursor != null) {

mCursor.moveToFirst();

}

return mCursor;

}

205

//---updates a contact---

public boolean updateContact(long rowId, String name, String email)

{

ContentValues args = new ContentValues();

args.put(KEY_NAME, name);

args.put(KEY_EMAIL, email);

return db.update(DATABASE_TABLE, args, KEY_ROWID + “=” + rowId, null) > 0;

}

}

Working Principle:

 You first defined several constants to contain the various fields for the table that you

are going to createin your database:

public static final String KEY_ROWID = “_id”;

public static final String KEY_NAME = “name”;

public static final String KEY_EMAIL = “email”;

private static final String TAG = “DBAdapter”;

private static final String DATABASE_NAME = “MyDB”;

private static final String DATABASE_TABLE = “contacts”;

private static final int DATABASE_VERSION = 1;

private static final String DATABASE_CREATE =

“create table contacts (_id integer primary key autoincrement, “

+ “name text not null, email text not null);”;

 In particular, the DATABASE_CREATE constant contains the SQL statement for

creating the contacts table within the MyDB database.

 Within the DBAdapter class, you also extend the SQLiteOpenHelper class, which is a

helper class in Android to manage database creation and version management.

 In particular, you override the onCreate() and onUpgrade() methods:

public class DBAdapter {

public static final String KEY_ROWID = ―_id‖;

public static final String KEY_NAME = ―name‖;

public static final String KEY_EMAIL = ―email‖;

206

private static final String TAG = ―DBAdapter‖;

private static final String DATABASE_NAME = ―MyDB‖;

private static final String DATABASE_TABLE = ―contacts‖;

private static final int DATABASE_VERSION = 1;

private static final String DATABASE_CREATE =

―create table contacts (_id integer primary key autoincrement, ―

+ ―name text not null, email text not null);‖;

private final Context context;

private DatabaseHelper DBHelper;

private SQLiteDatabase db;

public DBAdapter(Context ctx)

{

this.context = ctx;

DBHelper = new DatabaseHelper(context);

}

private static class DatabaseHelper extends SQLiteOpenHelper

{

DatabaseHelper(Context context)

{

super(context, DATABASE_NAME, null, DATABASE_VERSION);

}

@Override

public void onCreate(SQLiteDatabase db)

{

try {

db.execSQL(DATABASE_CREATE);

} catch (SQLException e) {

e.printStackTrace();

}

}

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int

newVersion)

{

207

Log.w(TAG, “Upgrading database from version “ + oldVersion + “ to “

+ newVersion + “, which will destroy all old data”);

db.execSQL(“DROP TABLE IF EXISTS contacts”);

onCreate(db);

}

}

 The onCreate() method creates a new database if the required database is not present.

The

onUpgrade() method is called when the database needs to be upgraded.

 This is achieved by checking the value defined in the DATABASE_VERSION

constant. For this implementation of the onUpgrade() method,you simply drop the

table and create it again.

 You can then define the various methods for opening and closing the database, as well

as the methodsfor adding/editing/deleting rows in the table:

public class DBAdapter {

//...

//...

//---opens the database---

public DBAdapter open() throws SQLException

{

db = DBHelper.getWritableDatabase();

return this;

}

//---closes the database---

public void close()

{

DBHelper.close();

}

//---insert a contact into the database---

public long insertContact(String name, String email)

{

ContentValues initialValues = new ContentValues();

initialValues.put(KEY_NAME, name);

208

initialValues.put(KEY_EMAIL, email);

return db.insert(DATABASE_TABLE, null, initialValues);

}

//---deletes a particular contact---

public boolean deleteContact(long rowId)

{

return db.delete(DATABASE_TABLE, KEY_ROWID + “=” + rowId,

null) > 0;

}

//---retrieves all the contacts---

public Cursor getAllContacts()

{

return db.query(DATABASE_TABLE, new String[] {KEY_ROWID,

KEY_NAME,

KEY_EMAIL}, null, null, null, null, null);

}

//---retrieves a particular contact---

public Cursor getContact(long rowId) throws SQLException

{

Cursor mCursor =

db.query(true, DATABASE_TABLE, new String[] {KEY_ROWID,

KEY_NAME, KEY_EMAIL}, KEY_ROWID + “=” + rowId, null,

null, null, null, null);

if (mCursor != null) {

mCursor.moveToFirst();

}

return mCursor;

}

//---updates a contact---

public boolean updateContact(long rowId, String name, String email)

{

ContentValues args = new ContentValues();

args.put(KEY_NAME, name);

args.put(KEY_EMAIL, email);

209

return db.update(DATABASE_TABLE, args, KEY_ROWID + “=” +

rowId, null) > 0;

}

}

 Notice that Android uses the Cursor class as a return value for queries. Think of the

Cursor as a pointer to the result set from a database query. Using Cursor enables

Android to more efficiently manage rows and columns as needed.

 You use a Content Values object to store key/value pairs. Its put() method enables

you to insert keys with values of different data types.

5.4. Android Services

5.4.1.Consuming Web Services using HTTP:

 Using the HTTP protocol, you can perform a wide variety of tasks, such as

downloading web pages from a web server, downloading binary data, and so on.

 The following Try It Out creates an Android project so that you can use the HTTP

protocol to connectto the Web to download all sorts of data.

Example:

1. Using Eclipse, create a new Android project and name it Networking.

2. Add the following statement in bold to the AndroidManifest.xml file:

<?xml version=‖1.0‖ encoding=‖utf-8‖?>

<manifest xmlns:android=‖http://schemas.android.com/apk/res/android‖

package=‖net.learn2develop.Networking‖

android:versionCode=‖1‖

android:versionName=‖1.0‖>

<application android:icon=‖@drawable/icon‖ android:label=‖@string/app_name‖>

<activity android:name=‖.MainActivity‖

android:label=‖@string/app_name‖>

<intent-filter>

<action android:name=‖android.intent.action.MAIN‖ />

<category android:name=‖android.intent.category.LAUNCHER‖ />

</intent-filter>

210

</activity>

</application>

<uses-sdk android:minSdkVersion=‖8‖ />

<uses-permission android:name=”android.permission.INTERNET”></uses-

permission>

</manifest>

3. Import the following namespaces in the MainActivity.java file:

package net.learn2develop.Networking;

import android.app.Activity;

import android.os.Bundle;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.net.URLConnection;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.widget.ImageView;

import android.widget.Toast;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

public class MainActivity extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

211

}

4. Define the OpenHttpConnection() method in the MainActivity.java file:

public class MainActivity extends Activity {

private InputStream OpenHttpConnection(String urlString)

throws IOException

{

InputStream in = null;

int response = -1;

URL url = new URL(urlString);

URLConnection conn = url.openConnection();

if (!(conn instanceof HttpURLConnection))

throw new IOException(―Not an HTTP connection‖);

try{

HttpURLConnection httpConn = (HttpURLConnection) conn;

httpConn.setAllowUserInteraction(false);

httpConn.setInstanceFollowRedirects(true);

httpConn.setRequestMethod(―GET‖);

httpConn.connect();

response = httpConn.getResponseCode();

if (response == HttpURLConnection.HTTP_OK) {

in = httpConn.getInputStream();

}

}

catch (Exception ex)

{

throw new IOException(―Error connecting‖);

}

return in;

}

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

212

}

}

Working Principle:

 your application needs the INTERNETpermission; hence, the first thing you do is add

the permission in the AndroidManifest.xml file.

 You then define the OpenHttpConnection() method, which takes a URL string and

returns an InputStreamobject. Using an InputStream object, you can download the

data by reading bytes from the stream object.

 In this method, you made use of the HttpURLConnection object to open an HTTP

connection with a remoteURL. You set all the various properties of the connection,

such as the request method, and so on:

HttpURLConnection httpConn = (HttpURLConnection) conn;

httpConn.setAllowUserInteraction(false);

httpConn.setInstanceFollowRedirects(true);

httpConn.setRequestMethod(“GET”);

 After you try to establish a connection with the server, you get the HTTP response

code from it. If theconnection is established (via the response code HTTP_OK), then

you proceed to get an InputStream object from the connection:

httpConn.connect();

response = httpConn.getResponseCode();

if (response == HttpURLConnection.HTTP_OK) {

in = httpConn.getInputStream();

}

 Using the InputStream object, you can then start to download the data from the server.

5.4.2.Downloading Binary Data

 One of the common tasks you need to perform is downloading binary data from the

Web.

 For example,you may want to download an image from a server so that you can

display it in your application.

213

Example:

1. Using the same project created earlier, add the following statements in bold to the

main.xml file:

<?xml version=‖1.0‖ encoding=‖utf-8‖?>

<LinearLayout xmlns:android=‖http://schemas.android.com/apk/res/android‖

android:orientation=‖vertical‖

android:layout_width=‖fill_parent‖

android:layout_height=‖fill_parent‖

>

<ImageView

android:id=”@+id/img”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_gravity=”center” />

</LinearLayout>

2. Add the following statements in bold to the MainActivity.java file:

public class MainActivity extends Activity {

ImageView img;

private InputStream OpenHttpConnection(String urlString)

throws IOException

{

//...

}

private Bitmap DownloadImage(String URL)

{

Bitmap bitmap = null;

InputStream in = null;

try {

in = OpenHttpConnection(URL);

bitmap = BitmapFactory.decodeStream(in);

in.close();

} catch (IOException e1) {

Toast.makeText(this, e1.getLocalizedMessage(),

Toast.LENGTH_LONG).show();

214

e1.printStackTrace();

}

return bitmap;

}

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

//---download an image---

Bitmap bitmap =

DownloadImage(

“http://www.streetcar.org/mim/cable/images/cable-01.jpg”);

img = (ImageView) findViewById(R.id.img);

img.setImageBitmap(bitmap);

}

}

3. Press F11 to debug the application on the Android Emulator.

Working Principle:

 The DownloadImage() method takes the URL of the image to download and then

opens the connection tothe server using the OpenHttpConnection() method that you

have defined earlier.

 Using the InputStreamobject returned by the connection, the decodeStream() method

from the BitmapFactory class is usedto download and decode the data into a Bitmap

object. The DownloadImage() method returns a Bitmapobject.

215

5.4.3.Downloading text Files

 Besides downloading binary data, you can also download plain-text files.

 For example, you mightbe writing an RSS Reader application and hence need to

download RSS XML feeds for processing.

Example:

1. Using the same project created earlier, add the following statements in bold to the

MainActivity.java file:

public class MainActivity extends Activity {

ImageView img;

private InputStream OpenHttpConnection(String urlString)

throws IOException

{

//...

}

private Bitmap DownloadImage(String URL)

{

//...

}

216

private String DownloadText(String URL)

{

int BUFFER_SIZE = 2000;

InputStream in = null;

try {

in = OpenHttpConnection(URL);

} catch (IOException e1) {

Toast.makeText(this, e1.getLocalizedMessage(),

Toast.LENGTH_LONG).show();

e1.printStackTrace();

return “”;

}

InputStreamReader isr = new InputStreamReader(in);

int charRead;

String str = “”;

char[] inputBuffer = new char[BUFFER_SIZE];

try {

while ((charRead = isr.read(inputBuffer))>0)

{

//---convert the chars to a String---

String readString =

String.copyValueOf(inputBuffer, 0, charRead);

str += readString;

inputBuffer = new char[BUFFER_SIZE];

}

in.close();

} catch (IOException e) {

Toast.makeText(this, e.getLocalizedMessage(),

Toast.LENGTH_LONG).show();

e.printStackTrace();

return “”;

}

return str;

}

217

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

//---download an image---

Bitmap bitmap =

DownloadImage(

―http://www.streetcar.org/mim/cable/images/cable-01.jpg‖);

img = (ImageView) findViewById(R.id.img);

img.setImageBitmap(bitmap);

//---download an RSS feed---

String str = DownloadText(

“http://www.appleinsider.com/appleinsider.rss”);

Toast.makeText(getBaseContext(), str,

Toast.LENGTH_SHORT).show();

}

}

2. Press F11 to debug the application on the Android Emulator. Figure 8-10 shows the RSS

feed

downloaded and displayed using the Toast class.

218

Working Principle:

 The DownloadText() method takes an URL of the text file to download and then

returns the stringof the text file downloaded.

 It basically opens an HTTP connection to the server and then uses

anInputStreamReader object to read each character from the stream and save it in a

String object.

5.4.4. Accessing Web Services

 Once the Web service returns a resultin XML, you will extract the relevant parts and

display its content using the Toast class.

 For this example, the web method you will be using is from

http://services.aonaware.com/

 DictService/DictService.asmx?op=Define. This web method is from a Dictionary

Web service that returns the definitions of a given word.

The web method takes a request in the following format:

GET /DictService/DictService.asmx/Define?word=string HTTP/1.1

Host: services.aonaware.com

HTTP/1.1 200 OK

219

Content-Type: text/xml; charset=utf-8

Content-Length: length

It returns a response in the following format:

<?xml version=”1.0” encoding=”utf-8”?>

<WordDefinition xmlns=”http://services.aonaware.com/webservices/”>

<Word>string</Word>

<Definitions>

<Definition>

<Word>string</Word>

<Dictionary>

<Id>string</Id>

<Name>string</Name>

</Dictionary>

<WordDefinition>string</WordDefinition>

</Definition>

<Definition>

<Word>string</Word>

<Dictionary>

<Id>string</Id>

<Name>string</Name>

</Dictionary>

<WordDefinition>string</WordDefinition>

</Definition>

</Definitions>

</WordDefinition>

Example:

1. Using the same project created earlier, add the following statements in bold to the

MainActivity.java file:

public class MainActivity extends Activity {

ImageView img;

private InputStream OpenHttpConnection(String urlString)

throws IOException

{

//...

220

}

private Bitmap DownloadImage(String URL)

{

//...

}

private String DownloadText(String URL)

{

//...

}

private void WordDefinition(String word) {

InputStream in = null;

try {

in = OpenHttpConnection(

“http://services.aonaware.com/DictService/DictService.asmx/Define?word=” + word);

Document doc = null;

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db;

try {

db = dbf.newDocumentBuilder();

doc = db.parse(in);

} catch (ParserConfigurationException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

doc.getDocumentElement().normalize();

//---retrieve all the <Definition> nodes---

NodeList itemNodes =

doc.getElementsByTagName(“Definition”);

String strDefinition = “”;

for (int i = 0; i < definitionElements.getLength(); i++) {

221

Node itemNode = definitionElements.item(i);

if (itemNode.getNodeType() == Node.ELEMENT_NODE)

{

//---convert the Node into an Element---

Element definitionElement = (Element) itemNode;

//---get all the <WordDefinition> elements under

// the <Definition> element---

NodeList wordDefinitionElements =

(definitionElement).getElementsByTagName(

“WordDefinition”);

strDefinition = “”;

for (int j = 0; j < wordDefinitionElements.getLength(); j++) {

//---convert a <WordDefinition> Node into an Element---

Element wordDefinitionElement =

(Element) wordDefinitionElements.item(j);

//---get all the child nodes under the

// <WordDefinition> element---

NodeList textNodes =

((Node) wordDefinitionElement).getChildNodes();

strDefinition +=

((Node) textNodes.item(0)).getNodeValue() + “. “;

}

//---display the title---

Toast.makeText(getBaseContext(),strDefinition,

Toast.LENGTH_SHORT).show();

}

}

} catch (IOException e1) {

Toast.makeText(this, e1.getLocalizedMessage(),

Toast.LENGTH_LONG).show();

e1.printStackTrace();

}

}

/** Called when the activity is first created. */

222

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

//---download an image---

Bitmap bitmap =

DownloadImage(

―http://www.streetcar.org/mim/cable/images/cable-01.jpg‖);

img = (ImageView) findViewById(R.id.img);

img.setImageBitmap(bitmap);

//---download an RSS feed---

String str = DownloadText(

Toast.makeText(getBaseContext(), str,

Toast.LENGTH_SHORT).show();

//---access a Web service using GET---

WordDefinition(“Apple”);

}

}

2. Press F11 to debug the application on the Android Emulator. Figure 8-11 shows the result

of the

Web service call being parsed and then displayed using the Toast class.

223

Working Principle:

It then uses the DocumentBuilderFactory and DocumentBuilder objects to obtain a Document

(DOM)object from an XML file (which is the XML result returned by the Web service):

Document doc = null;

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db;

try {

db = dbf.newDocumentBuilder();

doc = db.parse(in);

} catch (ParserConfigurationException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

224

doc.getDocumentElement().normalize();

Once the Document object is obtained, you will find all the elements with the <Definition>

tag:

//---retrieve all the <Definition> nodes---

NodeList itemNodes =

doc.getElementsByTagName(“Definition”);

db = dbf.newDocumentBuilder();

doc = db.parse(in);

} catch (ParserConfigurationException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

doc.getDocumentElement().normalize();

Once the Document object is obtained, you will find all the elements with the <Definition>

tag:

//---retrieve all the <Definition> nodes---

NodeList itemNodes =

doc.getElementsByTagName(“Definition”);

db = dbf.newDocumentBuilder();

doc = db.parse(in);

} catch (ParserConfigurationException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

doc.getDocumentElement().normalize();

Once the Document object is obtained, you will find all the elements with the <Definition>

tag:

//---retrieve all the <Definition> nodes---

225

NodeList itemNodes =

doc.getElementsByTagName(“Definition”);

226

Review Questions

PART-A(2 Mark Questions)

1. Define Location based services.

2. What are the two methods used for zoom control?

3. What is meant by geocoding?

4. What is meant by reverse geocoding?

5. Define Content Provider.

6. Define Android Service.

7. Define Web Service

PART-B(3 Mark Questions)

1. Explain zoom Control.

2. Explain how to navigate to a specific location.

3. Explain geocoding and reverse geocoding.

4. Explain accessing web service.

5. Explain downloading binary data.

PART-C(5&10 Mark Questions)

1. Explain how will you obtain maps API Key.(5)

2. Explain how to display the map in Android(5)

3. Explain adding markers in android(10)

4. Explain how to share data in android(5)

5. Explain how to view,modify,delete,and add contacts using Android(10)

6. Explain Storing and retrieving datas in internal and external storage using

Android(10)

7. Explain how will you create and use databases using SQLite(10)

8. Explain Consuming Web services using HTTP

9. Explain downloading binary data and downloading text content using android(10)

